Theoretical and experimental analysis of a boost converter

http://dx.doi.org/10.46411/jpsoaphys.2020.02.28

Section  de la parution:  Informations de publication

 

J. P. Soaphys, Vol 2, N°2 (2020) C20A28; 25 Juin 2021

Pages :  C20A28-1  à C20A28-9

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v2.2
DOI de l’article  : http://dx.doi.org/10.46411/jpsoaphys.2020.02.28
Print ISSN: 2630-0958
Historique de la version : actuelle

Information sur les auteurs

Badiane Modou 1*

Honadia Prince Abdoul Aziz 2,

Barro Fabé Idrissa 3

1 Semiconductors and Solar Energy Laboratory, Department of Physics to the Faculty of Science and Technique, Cheikh Anta Diop University, Dakar, Senegal,
2 Thermal and Renewable Energies Laboratory, Department of Physics to Polytechnic University Center of kaya, Burkina Faso,
3 Semiconductors and Solar Energy Laboratory, Department of Physics to the Faculty of Science and Technique, Cheikh Anta Diop University, Dakar, Senegal,

*To whom correspondances should be addressed. E-mail:  *modoubadiane99@gmail.com

 

Abstract:
A theoretical and experimental study of a conventional boost converter is presented. Based on the real behavior of the components, the conventional boost converter model dealing with both inductive and capacitive losses as well as switching losses is introduced. From this model, the detailed analytical expressions of the voltage gain factor and the conversion efficiency are established taking into account the losses due to parasitic resistances and switching losses. The behavior of the converter is then analyzed by simulating the voltage gain factor and the conversion efficiency as a function of the duty cycle. The converter prototype was manufactured and a set of experimental measurements was made; these measurements made it possible to demonstrate that the proposed theoretical models were reliable for a large range of duty cycle for the boost converter. 
 
Keywords : Duty cycle, gain factor, efficiency, ESR, power losses

RESUME
Une étude théorique et expérimentale d’un convertisseur boost conventionnel est présentée. Sur la base du comportement réel des composants, le modèle de convertisseur élévateur traitant aussi bien des pertes inductives et capacitives que des pertes de commutation est introduit. À partir de ce modèle, les expressions analytiques détaillées du facteur de gain en tension et du rendement de conversion sont établies en tenant compte des pertes dues aux résistances parasites et aux pertes de commutation. Le comportement du convertisseur est ensuite analysé par simulation du facteur de gain en tension et du rendement de conversion en fonction du rapport cyclique. Le prototype du convertisseur a été mis en oeuvre et un ensemble de mesures expérimentales a été effectué ; ces mesures ont permis de démontrer que les modèles théoriques proposés étaient fiables pour une large gamme de rapport cyclique du convertisseur boost.
Mots-Clés : Rapport cyclique, gain en tension, rendement, ESR, pertes de puissance.

 

Abusorrah, A., Al-Hindawi, M. M., Al-Turki, Y., Mandal, K., Giaouris, D., Banerjee, S., Voutetakis, S. and Papadopoulou, S. (2013) Stability of a boost converter fed from photovoltaic source, Solar Energy, 98, 458-
471. https://doi.org/10.1016/j.solener.2013.09.001

Ayop, R. and Tan, C. W. (2018) Design of boost converter based on maximum power point resistance for photovoltaic applications, Solar Energy, 160, 322–335. https://doi.org/10.1016/j.solener.2017.12.016

Branko L. Dokić, Branko Blanuša, (2015) Power Electronics: Converters and Regulators, 3rd Edition, Springer International Publishing.

Das, M., Agarwal, V. (2012) A novel, high efficiency, high gain, front end dc-dc converter for low input voltage solar photovoltaic applications, Proceedings of the 38th Annual Conference of the IEEE IECON, 5744– 5749.
Dash, S. S. and Nayak, B. (2015) Control analysis and experimental verification of a practical dc–dc boost
converter, Journal of Electrical Systems and Information Technology, 2, 378-390. https://doi.org/10.1016/j.jesit.2015.08.001

Durán, E., Andújar, J. M., Segura, F., Barragán, A. J. (2011) A high-flexibility DC load for fuel cell and solar
arrays power sources based on DC–DC converters, Applied Energy, 88, 1690-1702. https://doi.org/10.1016/j.apenergy.2010.11.002

Erickson, R.W., Maksimovic, D. (2004) Fundamentals of power electronics. 2nd Edition, New York, Kluwer
Academic Publishers.

Haibing, H., Qian, Z., Xiang, F., Shen, Z. J. and Batarseh, I. (2011) A single stage mi-cro-inverter based on a three-port flyback with power decoupling capability. Energy Conversion Congress and Exposition (ECCE), IEEE, 1411-1416.

Honadia, P.A.A., Barro, F.I. and Sané, M. (2018) Performance Analysis of a Boost Converter with
Components Losses. Energy and Power Engineering, 10, 399-413. https://doi.org/10.4236/epe.2018.109025

Kesraoui, M., Korichi, N. and Belkadi, A. (2011) Maximum power point tracker of wind energy conversion system. Renew Energy; 36, 2655-2662. https://doi.org/10.1016/j.renene.2010.04.028

Li, Q. and Wolfs, P. (2008) A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations. IEEE Trans. on Power electron. 23, 320-1333.

Li, W., Lv, X., Deng, Y., Liu, J. and He, X. (2009) A Review of Non-Isolated High Step-Up DC/DC Converters in Renewable Energy Applications, 24th Annual Conference and Exposition of the IEEE, Applied Power Electronics Conference and Exposition, Washington DC, 15-19 February 2009,364-369.

Mahela, O. P., Shaik, A. G. (2017) Comprehensive overview of grid interfaced solar pho-tovoltaic systems, Renewable and Sustainable Energy Reviews, 68, 316-332. https://doi.org/10.1016/j.rser.2016.09.096

Petreuş, D., Daraban, S., Ciocan, I., Patarau, T., Morel, C. and Machmoum, M. (2013) Low cost single stage micro-inverter with MPPT for grid connected applications, Solar Energy, 92, 241-255. https://doi.org/10.1016/j.solener.2013.03.016

Rajesh, R., Mabel, M. C. (2015) A comprehensive review of photovoltaic systems, Re-newable and Sustainable Energy Reviews, 51, 231-248. https://doi.org/10.1016/j.rser.2015.06.006

Sadek, U., Sarjaš, A., Svečko, R., Chowdhury, A. (2015) FPGA-based control of a DC-DC boost converter, IFAC-PapersOnLine, 48, 22-27. https://doi.org/10.1016/j.ifacol.2015.08.102

Shuhui, L., Timothy, A. H. and Dawen, L. (2011) Fei H. Integrating photovoltaic and power converter characteristics for energy extraction study of solar PV systems. Renew Energy; 36, 3238-45. https://doi.org/10.1016/j.renene.2011.02.016

Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H. and Marhaban, M. H. (2013) A current and future study on non-isolated DC–DC converters for photovoltaic applications, Renewable and Sustainable Energy Reviews, 17, 216–227. https://doi.org/10.1016/j.rser.2012.09.023

Ternifi, Z. E. T., Petit, P., Bachir, G. and Aillerie, M. (2017) New Topology of Photovoltaic Microinverter based on Boost converter. Energy Procedia, 119, 938- 944. https://doi.org/10.1016/j.egypro.2017.07.106

Variath, R. C., Andersen, M. A. E., Nielsen O. N. and A. Hyldgard. (2010) A review of module inverter topologies suitable for photovoltaic systems. Proc. IEEE IPEC, 310-316.

Wang, T. and Tang, Y. (2013) A High Step-up Voltage Gain DC/DC Converter for the Micro-Inverter. IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 1089-1094.

Winder, S. (2017) Power Supplies for LED Driving, 2nd Edition, Newnes.

Wu, G., Ruan, X. and Ye, Z. (2018) Non-isolated high step-up DC–DC converter adopting auxiliary capacitor and coupled inductor, J. Mod. Power Syst. Clean Energy, 6, 384–398. https://doi.org/10.1007/s40565-017-0342-8

Wu, K. (2016) Power Converters with Digital Filter Feedback Control, Academic Press. Wu, K. C. (1997) Pulse Width Modulated DC-DC Converters, Springer US, 1997. https://doi.org/10.1007/978-1-4615-6021-0

article elements

Categories: