Design and testing of a low-tech pedestal heliostat with its closed-loop tracking sensor for a micro concentrating solar power plant pilot in the Sahel: Case of CSP4Africa
- Post by: SOAPHYS-KZ
- 23 septembre 2025
- Comments off

http://dx.doi.org/10.46411/jpsoaphys.2025.C25.03

Section de la parution: Informations de publication
J. P. Soaphys, Vol 5, N°1 (2025) C25A03
Pages : C23A03-1 à C25A03-12
Informations sur les auteurs. et affiliations
Mahamadou MAIGA1, Dimeba Osnoun Mubarak OUEDRAOGO1, Aboubakar GOMNA1, Kokouvi Edem N’TSOUKPOE1*, Kokou Florent YIBOKOU1, Hervé N. KENHAGHO2
1 Laboratoire Énergies Renouvelables et Efficacité Énergétique (LabEREE), Département Génie Électrique, Énergétique et Industriel, Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), 01 BP 594 Ouagadougou 01, Burkina Faso
2 Biomedical Laser and Optics Group, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
Corresponding author e-mail :* edem.ntsoukpoe@2ie-edu.org
ABSTRACT
This study focuses on the design, construction, and test of a low-tech pedestal heliostat with its closed-loop tracking sensor for a micro CSP plant pilot. The design has involved the sizing of the 4 main components of the pedestal heliostat namely the support structure of the mirrors, the pedestal itself, the drive unit and the control unit. The 4 main components were then assembled to construct the heliostat pedestal that meets the aspirations of the CSP4Africa project. After the implementation of the heliostat, daily tests were carried out over several days to assess the ability of the device with its closed-loop tracking sensor to keep the focal spot on the target during the operating period of the CSP4Africa plant, which is from 9:00 am to 3:00 pm. Satisfactory results were met with a solar tracking error lower than 1° for a focal length of 5 m.
Keywords : Central receiver systems; Power tower plants; Pedestal heliostat; Closed-loop tracking; Four-quadrant LDR; CSP4Africa
RESUME
Cette étude se concentre sur la conception, la construction et le test d’un héliostat piédestal de faible technicité pour un pilote de micro-centrale CSP. La conception a impliqué le dimensionnement des 4 composants principaux de l’héliostat piédestal, à savoir la structure de support des miroirs, le piédestal lui-même, l’organe d’entraînement et l’organe de commande. Les quatre composants principaux ont ensuite été assemblés pour construire l’héliostat piédestal qui répond aux aspirations du projet CSP4Africa. Après l’implémentation de l’héliostat, des tests de suivi solaire ont été réalisés pendant plusieurs jours pour évaluer la capacité de l’appareil avec son capteur de boucle fermée à garder la tâche focale à l’intérieur du cercle cible pendant la période de fonctionnement de la microcentrale CSP4Africa, qui va de 9h00 à 15h00. Des résultats satisfaisants ont été obtenus avec une erreur de suivi solaire inférieure à 1° pour une distance focale de 5 m.
Mots-Clés : Centrales solaires à tour ; Héliostat piédestal ; Suivi solaire en boucle fermée ; capteur LDR à quatre quadrants ; CSP4Africa
REFERENCES
[1] Nalule VR. Energy Poverty and Access Challenges in Sub-Saharan Africa: The role of regionalism. Springer; 2018.
[2] González-Eguino M. Energy poverty: An overview. Renewable and Sustainable Energy Reviews 2015;47:377–85. https://doi.org/10.1016/j.rser.2015.03.013.
[3] N’tsoukpoe KE, Lekombo SC, Kemausuor F, Ko GK, Diaw EHB. Overview of solar thermal technology development and applications in West Africa: Focus on hot water and its applications. Scientific African 2023;21:e01752. https://doi.org/10.1016/j.sciaf.2023.e01752.
[4] Azoumah Y, Ramdé EW, Tapsoba G, Thiam S. Siting guidelines for concentrating solar power plants in the Sahel: Case study of Burkina Faso. Solar Energy 2010;84:1545–53. https://doi.org/10.1016/j.solener.2010.05.019.
[5] Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Solar Energy Materials and Solar Cells 2011;95:2703–25. https://doi.org/10.1016/j.solmat.2011.05.020.
[6] N’Tsoukpoe KE, Azoumah KY, Ramde E, Fiagbe AKY, Neveu P, Py X, et al. Integrated design and construction of a micro-central tower power plant. Energy for Sustainable Development 2016;31:1–13. https://doi.org/10.1016/j.esd.2015.11.004.
[7] SESHIE YM. Modélisation et expérimentation d’une microcentrale solaire a concentration. http://documentation.2ie-edu.org/cdi2ie/opac_css/index.php?lvl=author_see&id=17880. Documentation Institut 2iE; 2018.
[8] Seshie YM, N’Tsoukpoe KE, Neveu P, Coulibaly Y, Azoumah YK. Small scale concentrating solar plants for rural electrification. Renewable and Sustainable Energy Reviews 2018;90:195–209. https://doi.org/10.1016/j.rser.2018.03.036.
[9] Zhu G, Augustine C, Mitchell R, Muller M, Kurup P, Zolan A, et al. Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power. National Renewable Energy Lab. (NREL), Golden, CO (United States); 2022. https://doi.org/10.2172/1888029.
[10] Sattler JC, Röger M, Schwarzbözl P, Buck R, Macke A, Raeder C, et al. Review of heliostat calibration and tracking control methods. Sol Energy 2020;207:110–32. https://doi.org/10.1016/j.solener.2020.06.030.
[11] Mahboob K, Awais Q, Khan A, Fawad T, Rasool M, Nawaz Q, et al. Selection of Sensors for Heliostat of Concentrated Solar Thermal Tower Power Plant. Engineering Proceedings 2021;12:41.
[12] Aiuchi K, Yoshida K, Onozaki M, Katayama Y, Nakamura M, Nakamura K. Sensor-controlled heliostat with an equatorial mount. Solar Energy 2006;80:1089–97. https://doi.org/10.1016/j.solener.2005.10.007.
[13] Convery MR. Closed-loop control for power tower heliostats. High and Low Concentrator Systems for Solar Electric Applications VI, vol. 8108, SPIE; 2011, p. 142–9. https://doi.org/10.1117/12.898564.
[14] Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants. Renewable and Sustainable Energy Reviews 2013;23:12–39. https://doi.org/10.1016/j.rser.2013.02.017.
[15] Jaanaki SM, Mandal D, Hullikeri HH, V S, A AS. Performance Enhancement of Solar Panel Using Dual Axis Solar Tracker. 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), 2021, p. 98–102. https://doi.org/10.1109/ICDI3C53598.2021.00028.
[16] Hammoumi AE, Motahhir S, Ghzizal AE, Chalh A, Derouich A. A simple and low-cost active dual-axis solar tracker. Energy Science & Engineering 2018;6:607–20. https://doi.org/10.1002/ese3.236.
[17] Wang J-M, Lu C-L. Design and implementation of a sun tracker with a dual-axis single motor for an optical sensor-based photovoltaic system. Sensors 2013;13:3157–68.
[18] LINGALA VENKATESWARLU C, SESHAIAH T. Dual sun tracking system by using four quadrant sensor n.d.
[19] Lee C-Y, Chou P-C, Chiang C-M, Lin C-F. Sun tracking systems: a review. Sensors 2009;9:3875–90.
[20] Marinho F, Carvalho CM, Apolinário FR, Paulucci L. Measuring light with light-dependent resistors: an easy approach for optics experiments. Eur J Phys 2019;40:035801. https://doi.org/10.1088/1361-6404/ab11f1.
[21] Kallos G. Vulnerability of Energy to Climate. In: Pielke RA, editor. Climate Vulnerability, Oxford: Academic Press; 2013. https://doi.org/10.1016/B978-0-12-384703-4.00301-4.
[22] Maiga M, N’Tsoukpoe KE, Gomna A, Fiagbe YAK. Sources of solar tracking errors and correction strategies for heliostats. Renewable and Sustainable Energy Reviews 2024;203:114770. https://doi.org/10.1016/j.rser.2024.114770.
[23] NREL. Operational | Concentrating Solar Power Projects | NREL n.d. https://solarpaces.nrel.gov/by-status/operational (accessed April 30, 2022).
[24] Peterka JA, Derickson RG. Wind load design methods for ground-based heliostats and parabolic dish collectors. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); 1992. https://doi.org/10.2172/7105290.
[25] Yerudkar AN, Kumar D, Dalvi VH, Panse SV, Gaval VR, Joshi JB. Economically feasible solutions in concentrating solar power technology specifically for heliostats – A review. Renewable and Sustainable Energy Reviews 2024;189:113825. https://doi.org/10.1016/j.rser.2023.113825.
[26] El Ydrissi M, Ghennioui H, Bennouna EG, Farid A. A review of optical errors and available applications of deflectometry technique in solar thermal power applications. Renewable and Sustainable Energy Reviews 2019;116:109438. https://doi.org/10.1016/j.rser.2019.109438.
[27] Hachicha AA, Al-Sawafta I, Ben Hamadou D. Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions. Renewable Energy 2019;143:263–76. https://doi.org/10.1016/j.renene.2019.04.144.
[28] Escobar-Toledo M, Arancibia-Bulnes CA, Iriarte-Cornejo C, Waissman J, Riveros-Rosas D, Cabanillas RE, et al. Heliostat image drift behavior for different error sources. J Renewable Sustainable Energy 2014;6. https://doi.org/10.1063/1.4872465.
[29] Martínez-Hernández A, Gonzalo IB, Romero M, González-Aguilar J. Drift analysis in tilt-roll heliostats. Sol Energy 2020;211:1170–83. https://doi.org/10.1016/j.solener.2020.10.057.
[30] Morel J. Calcul des structures métalliques selon l’eurocode 3. https://trid.trb.org/view/1004578. 1994.
[31] Ren L, Wei X, Lu Z, Yu W, Xu W, Shen Z. A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system. Renewable and Sustainable Energy Reviews 2014;32:76–83. https://doi.org/10.1016/j.rser.2013.12.006.
[32] Zoma V, Tarama WJI, Ouédraogo J. Variabilité climatique dans la commune rurale de Seytenga au Burkina Faso. Les Cahiers de l’ACAREF 2022;4:320–34. https://hal.science/hal-03645488/.
[33] Direction de la météorologie du Burkina Faso. Bulletin météorologique décadaire. Burkina Faso: http://wamis.gmu.edu/countries/burkina/bad06072.pdf; 2016.
[34] Simulation de données climatiques et météorologiques historiques pour Ouagadougou. meteoblue weather 2023. https://www.meteoblue.com/fr/meteo/historyclimate/climatemodelled/ouagadougou_burkina-faso_2357048 (accessed October 26, 2023).
[35] SunEarthtools n.d. https://www.sunearthtools.com/dp/tools/pos_sun.php?lang=fr (accessed October 1, 2023).
