Characterization of radon in drinking water of Villy and the associated radiological hazards

  • Post by:
  • 27 décembre 2024
  • Comments off
https://dx.doi.org/10.46411/jpsoaphys.2024.C24A.009

Section  de la parution:  Informations de publication

J. P. Soaphys, Vol 4, N°2 (2024) C24A09

Pages :  C24A09-1  à C24A08-9

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v.24
DOI de l’article  : https://dx.doi.org/10.46411/jpsoaphys.2024.C24A.009
 
Print ISSN: 2630-0958
 
Historique de la version : actuelle

Informations sur les auteurs

Christian
BANGOU 1,2*; Zakaria YAMEOGO 1,2 ; Claude TIENDREBEOGO 2;
Karim HIE 1; Razakou ABDOUL 1, Issa ZERBO2
and Martial ZOUNGRANA 1,2.

 1Autorité nationale de
Radioprotection et de Sûreté Nucléaire, P.O. Box 7044, Ouagadougou, Burkina
Faso
2
Laboratoire des Énergies
Thermiques Renouvelables, Université Joseph KI-Zerbo, Ouagadougou, Burkina Faso

Corresponding author e-mail :  bangouchristian[at]yahoo.fr

ABSTRACT

In the present study, the activity concentrations of radon were measured in twenty-seven (27) water samples collected from Villy, a village of west central region which presents uranium anomalies. The associated radiological hazards were then assessed. The radon activity concentrations were in the range of 5.77±0.74 to 441.76±4.45 Bq.L-1 with an average of 157.31±2.30 Bq.L-1. The lower detection limit of the instrument SARAD EQF 3200 is 0.106 Bq.L-1. The average total annual effective dose due to radon was 1.06 mSv.y-1 with the range of 39 µSv.y-1 to 2.99 mSv.y-1. 70.37 % of the measured radon concentrations are found to be higher than 100 Bq.L-1, the reference levels of World Health Organization and European Union but were lower than the European Union action level of 1000 Bq.L-1. Accordingly, it does not pose any significant health hazards to the populace of Villy.

Keywords :  Radon, SARAD EQF 3200, Activity concentration, Reference level. 

RESUME

 

Dans la présente étude, les concentrations d’activité du radon ont été mesurées dans vingt-sept (27) échantillons d’eau prélevés à Villy, un village de la région du centre-ouest qui présente des anomalies d’uranium. Les dangers radiologiques associés ont ensuite été évalués. Les concentrations d’activité du radon se situaient entre 5,77±0,74 et 441,76±4,45 Bq.L-1, avec une moyenne de 157,31±2,30 Bq.L-1. La limite inférieure de détection de l’instrument SARAD EQF 3200 est de 0,106 Bq.L-1. La dose efficace annuelle totale moyenne due au radon était de 1,06 mSv.an-1, avec une plage de 39 μSv.an-1 à 2,99 mSv.an-1. 70,37 % des concentrations de radon mesurées sont supérieures à 100 Bq.L-1, niveaux de référence de l’Organisation Mondiale de la Santé et de l’Union Européenne, mais inférieures au seuil d’intervention de l’Union Européenne de 1000 Bq.L-1. En conséquence, il ne pose pas de risques significatifs pour la santé de la population de Villy.

Mots-Clés : Radon, SARAD EQF 3200, Concentration d’activité, Niveau de référence 

REFERENCES

Ademola, J. A., & Ojeniran, O. R. (2017). Radon-222 from
different sources of water and the assessment of health hazard. Journal of
Water and Health
, 15(1), 97‑102. https://doi.org/10.2166/wh.2016.073

Adinehvand, K., Sahebnasagh, A.,
& Hashemi-Tilehnoee, M. (2016). Radon Concentration in the Drinking Water
of Aliabad Katoul, Iran. Iranian Red Crescent Medical Journal, 18(7).
https://doi.org/10.5812/ircmj.27300

Ajiboye, Y., Isinkaye, M. O., Badmus,
G. O., Faloye, O. T., & Atoiki, V. (2022). Pilot groundwater radon mapping
and the assessment of health risk from heavy metals in drinking water of
southwest, Nigeria. Heliyon, 8(2), e08840.
https://doi.org/10.1016/j.heliyon.2022.e08840

BANGOU, C., OTOO, F., & DARKO, E.
O. (May 25, 2021). Performance testing and comparative study of natural
radioactivity in soil samples using high purity germanium (HPGe) detector. MethodsX.
https://doi.org/10.1016/j.mex.2021.101397

Bem, H., Plota, U., Staniszewska, M.,
Bem, E. M., & Mazurek, D. (2014). Radon (222Rn) in underground drinking
water supplies of the Southern Greater Poland Region. Journal of
Radioanalytical and Nuclear Chemistry
, 299(3), 1307‑1312.
https://doi.org/10.1007/s10967-013-2912-1

Beogo, C. E., Cisse, O. I., Kanazoe,
A. R., Maiga, A. R., & Zougmoré, F. (2019). Preliminary Study of Gamma Dose
Rate Distribution in the Anomaly of the West-Central Region of Burkina Faso :
Use of a Portable Gamma Detector. International
Journal for Research in Applied Science and Engineering Technology
, 7(2), 1101‑1106. https://doi.org/10.22214/ijraset.2019.2174

Duggal, V., Sharma, S., & Mehra,
R. (2020). Risk assessment of radon in drinking water in Khetri Copper Belt of
Rajasthan, India. Chemosphere, 239, 124782.
https://doi.org/10.1016/j.chemosphere.2019.124782

Euratom. (2013). Council directive
2013/51/Euratom of 22 October 2013 laying down requirements for the protection
of the health of the general public with regard to radioactive substances in
water intended for human consumption
.
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:296:0012:0021:EN:PDF

Fakhri, Y., Madani, A., & Moradi,
K. M. (June; 2015). Determination concentration of Radon222 in Tap drinking
water; Bandar Abbas City, Iran. IOSR Journal of Environmental Science,
Toxicology and Food Technology (IOSR-JESTFT)
. www.iosrjournals.org

IAEA. (2021). Protection against Exposure Due to Radon Indoors and Gamma Radiation
from Construction Materials—Methods of Prevention and Mitigation
.
IAEA.

Inácio, M., Soares, S., &
Almeida, P. (2017). Radon concentration assessment in water sources of public
drinking of Covilhã’s county, Portugal. Journal of Radiation Research and
Applied Sciences
, 10(2), 135‑139.
https://doi.org/10.1016/j.jrras.2017.02.002

Jobbágy, V., Altzitzoglou, T., Malo,
P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements
in drinking water. Journal of Environmental Radioactivity, 173,
18‑24. https://doi.org/10.1016/j.jenvrad.2016.09.019

Kayakökü, H. (2021). Determination of
Radon Concentrations in Surface Water Samples of Aygır Lake in Bitlis (Turkey).
Iğdır Üniversitesi Fen
Bilimleri Enstitüsü Dergisi
, 11(2), 1040‑1049. https://doi.org/10.21597/jist.827579

Kumar, A., Kaur, M., Sharma, S.,
& Mehra, R. (2016). A study of radon concentration in drinking water
samples of Amritsar city of Punjab (India). Radiation Protection and
Environment
, 39(1), 13. https://doi.org/10.4103/0972-0464.185155

Mayya, Y. S., Eappen, K. P., &
Nambi, K. S. V. (1998). Methodology for Mixed Field Inhalation Dosimetry in
Monazite Areas using a Twin-Cup Dosemeter with Three Track Detectors. Radiation Protection Dosimetry, 77(3), 177‑184. https://doi.org/10.1093/oxfordjournals.rpd.a032308

Mittal, S., Rani, A., & Mehra, R.
(2016). Estimation of radon concentration in soil and groundwater samples of
Northern Rajasthan, India. Journal of Radiation Research and Applied Sciences, 9(2), 125‑130. https://doi.org/10.1016/j.jrras.2015.10.006

Pirsaheb, M., Sharafi, K., Hemati,
L., & Fazlzadehdavil, M. (2015). Radon measurement in drinking water and
assessment of average annual effective dose in the west region of Iran. Fresenius Environmental Bulletin.

SARAD GmbH. (2007a). Measurement of the Radon concentration of
water samples
. Available: https://www.sarad.de/cms/media/docs/applikation/AN-003_RadonInWater_EN_17-01-24
(March 2023)

SARAD GmbH. (2007b). Measuring Principals – Decay Statistics –
Test Planning
. Available: https://www.sarad.de/cms/media/docs/applikation/AN-002_MeasurementPrincipals-Statistics-TestPlanning_EN_09-05-12
(March  2023)

SAWES. (2006). Accompaniment and support
of African local communities for the development of intervention strategies for
water and sanitation
.
https://www.pseau.org/smc_formation/smk/documents_source/…/d_06_koudougou.doc

Suresh, S., Rangaswamy, D. R.,
Srinivasa, E., & Sannappa, J. (2020). Measurement of radon concentration in
drinking water and natural radioactivity in soil and their radiological
hazards. Journal of Radiation Research and Applied Sciences, 13(1),
12‑26. https://doi.org/10.1080/16878507.2019.1693175

UN, OHCHR,
UN-Habitat, WHO.
(August, 2010). (The) Right to
Water, Fact Sheet No, 35
.
https://www.ohchr.org/fr/publications/fact-sheets/fact-sheet-no-35-right-water

United Nations (Éd.). (2000). Sources and effects of ionizing radiation:
United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR
2000 report to the General Assembly, with scientific annexes
. United Nations.

WHO. (2023). Radon. [Online], Available:
https://www.who.int/news-room/fact-sheets/detail/radon-and-health (April, 26
2023)

WHO. (2008). Guidelines for drinking-water quality [electronic resource] : Incorporating
1st and 2nd addenda,Vol.1, recommendations
(3rd ed). World Health
Organization. https://apps.who.int/iris/handle/10665/204411

Wu, Y., Cui, H., Liu, J., Shang, B.,
& Su, X. (2018). Radon Concentrations In Underground Drinking Water In
Parts Of Cities, China. Radiation Protection Dosimetry, 178(4),
354‑358. https://doi.org/10.1093/rpd/ncx121

article elements

Categories: