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R E S U M E / A B S T R A C T 

Senegal, a coastal country in the semi-arid Sahel region, faces significant risks associated with climate 
variability and climate change. Climate change is already affecting vulnerable people’s wellbeing and 
it’s expected to contribute to the (re)emergence of vector-borne, some water-borne and heat-related 
diseases, which will have disastrous consequences on the country’s fragile health system and socio-
economically vulnerable population. Our contribution to the National Adaptation Plan support Project 
- Global Environment Fund (NAP-GEF) aims to support community- based epidemiological 
surveillance and the design/maintenance of health information systems in order to improve planning, 
decision-making, and public health response. Our methodological approach aims to build a detailed 
climate and health database to describe the spatio-temporal characteristics of the climate-health 
relationships at national scale. Considering various indices of targeted diseases, we assess the degree 
of transmission of those diseases in Senegal for different historical period (1950-2014 and projections 
(2015-2100) based on a combination of the Shared Socio-Economic Pathways (SSPs) produced within 
the Coupled Model Intercomparison Project, phase 6 (CMIP6). Selected diseases include malaria, 
meningitis, dengue and Chronic – non communicable to heat waves. The project will strengthen 
institutional capacity to mainstream climate related risks within the Ministry of Health’s strategies and 
governance model, enabling a public health system framework to support long-term and sustainable 
adaptation funding and programs. The project is being implemented jointly with the Ministry of 
Environment and Sustainable Development (MEDD) and the Ministry of Health and Social Action 
(MSAS). The findings in the project will guide and operationalize community-based early-warning 
systems and adaptation strategies specific to local climate-sensitive diseases in targeted regions in 
Senegal, which will feed into the national health prevention, response, and care strategies adapted to 
the needs of local communities. Development of scientific evidence and a knowledge management 
system get started in this study about the links between climate change and health through the launch 
of studies in collaboration with research institutions. However, barriers or limitations to integrating 
climate change data and information into health policies have also been identified. 

 

INTRODUCTION 

According to the World Health Organization (WHO), an 
increase in temperature and humidity and in variability of 
rainfall increases the risk of water-borne diseases through 
acceleration of availability and quality of larval sites, 
survival, persistence, transmission, and virulence of 
pathogens, shifts in geographical and seasonal distribution 
of diseases. Higher temperatures also contribute to higher 
risks of vector-borne diseases through the development of 
breeding sites accelerating parasite replication and 
survival of the adult Aedes and Anopheles, more frequent 
bites, and longer transmission seasons; a re-emergence of 
previously prevalent diseases; changes in the distribution 
and abundance of disease vectors and reduced 
effectiveness of vector. Winds also influence their 
movement, playing a favourable or unfavourable role in 
the dispersion of vectors depending on their direction and 

speed, and causing shift in the spatial distribution of 
diseases (Trape, 1999; Lidsay et al, 1996; Ndiaye et al, 
2001). In addition, excessive heat increases the frequency 
and intensity of heatwaves which leads to higher rate of 
mortality due to excessive heat (Sy et al, 2022); increased 
incidence of heat stress and heat stroke, especially among 
those who work outdoor and the elderly; exacerbation of 
circulatory, cardiovascular, and respiratory; and increased 
premature mortality from ozone and fire-generated air 
pollution, especially during strong heat waves (Cissé et al, 
2022; Trisos et al, 2022). Climate-induced health 
outcomes leads to Senegal’s vulnerable communities, 
including children, women, and elders, facing increasing 
rates of morbidity and mortality, transferring national 
economic burden of health onto already highly vulnerable 
communities, and national health system, institutions and 
structures being vulnerable to climate hazards and 
disasters. Reduced health outcomes and increase of 
livelihoods insecurity leads to entrenched poverty among 
the Senegalese population and a possible decline in social 
development. 
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In Senegal, according to the Minister of Health and Social 
Action of Senegal MSAS (2019), the health status of the 
Senegalese population is marked by the persistence of the 
burden of climate sensitive diseases including malaria, 
dengue, meningitis, and climate-sensitive and non-
communicable diseases such as respiratory diseases and 
cardiovascular diseases. 
Regarding malaria, it is a vector-borne disease whose 
existence and transmission depend on three main factors: 
the plasmodium parasite, the Anopheles vector, and the 
human host. Beyond these essential factors, the risk of 
malaria transmission can be maintained or reinforced by 
environmental conditions, or climatic conditions as well as 
socio-economic factors. In particular, the transmission of 
malaria is very sensitive to climate and atmospheric 
conditions. When these are unusual, for example during 
heavy rainfall, mosquito populations can multiply and 
trigger epidemics. We have previously studied the climate-
malaria relationship (e.g., in Diouf et al., 2017) as well as 
the predictability of high malaria occurrences in Senegal 
and West Africa more generally (Diouf et al. 2021). With 
these studies, we have already noted a causal relationship 
between El Niño and malaria parameters. These results 
were endorsed in Diouf et al. 2021b by coupling the LMM 
malaria model (Liverpool Malaria Model) of Hoshen et al., 
2014 and the S4CAST (SST-based statistical ForeCAST) 
of Suárez-Moreno and Rodríguez-Fonseca, 2015. 
Moreover, several other vector-borne diseases, including 
dengue fever, are very sensitive to climatic and 
meteorological conditions. Dengue is one of the major 
public health problems, and it is a major cause of 
hospitalization and death, especially for children in 
endemic countries (Bhatt et al., 2013; Brady et al., 2012). 
Dengue fever is a vector-borne disease whose presence 
and transmission depend on three essential factors: the 
host, the pathogen, and the mosquito vectors (including 
Aedes. aegypti). In addition to socioeconomic factors, 
including population growth, lack of sanitation, increased 
human movement, and ineffective mosquito control, the 
risk of dengue transmission may be maintained or 
increased by environmental or climatic conditions. The 
effect of climatic parameters will be of particular interest 
in this study. Previous studies have shown that climatic 
factors contribute to global changes in dengue incidence 
and distribution. Although numerous studies have been 
carried out on the relationship between climatic conditions 
and dengue fever transmission, the effects of climate 
parameters on this vector-borne disease remain largely 
unexplored in our study area (West Africa and Senegal). 
notably). We attempt to identify and better describe the 
climate impact on observed dengue data and assess the 
capability of climate-based dengue models. Climate 
information from the latest climatological period will be 
used to drive existing statistical and process-based models 
to refine our knowledge of the relationships between 
climate and dengue fever. These biological statistical 
models will be driven by the Modeling Coupled Model 
Intercomparison Project, Phase 6 CMIP6 (Eyring et al., 
2016). 
For Meningitis, it appears in waves of epidemics and is one 
of the diseases that kill the most in West Africa. It 
generally affects children from 0 to less than 15 years old 

and sometimes adults. Since then, it has become a public 
health problem, hence the need to know and understand the 
risk factors allowing its appearance and its spread. Thus, 
recent studies at the end of the AMMA program 
(Multidisciplinary Analysis of the African Monsoon) have 
established a correlation between the episodes of dust 
observed during the dry season and the outbreak of 
meningitis epidemics (Jeanne et al., 2005; Martin and 
Chiapello, 2013). Therefore, climate variability is one of 
the risk factors for meningitis epidemics. However, since 
this link between climate and meningitis is not well 
documented in Senegal, or even in Africa, drawing 
inspiration from work on climate-health links in Senegal, 
including, among others, Ndione et al., 2008 on the rift 
valley fever and Diouf et al. (2017, 2020), on malaria, we 
in turn exploited certain climatic variables on a spatio-
temporal scale. The relationship between 
meteorological/dust variables and the number of 
meningitis cases in Senegal is studied with pre-existing 
meningitis models. 
In addition, most scientists agree on the existence of a 
global warming phenomenon that will increase the 
frequency and intensity of heat waves in all regions of the 
world. On the one hand, periods of high heat are associated 
with morbidity and mortality problems, particularly in 
people with sensitive respiratory or cardiovascular 
diseases. Heat stress has direct and indirect health effects. 
Among the most marked direct effects are exhaustion and 
heat stroke. Indirect effects, which affect many more 
people, usually result from the exacerbation of a chronic 
condition, such as cardiovascular and respiratory 
conditions. In temperate regions, very high temperatures 
during generally milder periods are associated with 
increased mortality. The phenomenon is less constant in 
the tropics, where temperatures are high for long periods 
and also vary less. On the other hand, in countries with 
marked temperature variations, the mortality rate rises in 
winter, when respiratory and infectious diseases are on the 
rise. A low temperature increases blood pressure and the 
efforts of the heart. People with heart problems are more 
at risk and should avoid overworking themselves. Colds 
also reduce resistance to infections, from the common cold 
to more serious illnesses, such as the flu. Low humidity 
during the winter months dries out the skin and can cause 
dermatitis (inflammation of the skin). As the cold reduces 
blood circulation by constricting the vessels, it can also 
damage the tissues and cause frostbite (damage to the skin 
by the cold). 
This work is organized as follows: Section 2 presents the 
different types of data used and the methods applied. 
Section 3 studies the spatio-temporal simulated diseases’ 
indices various climate and atmospheric. Finally, a 
summary and discussion of the main results are provided 
in Section 4. 

         DATA AND METHODS 

I.1. Data 

II.1.1.        Health observations data used in this study 
In terms of observation, we acquired health data from 
health districts, from MSAS sentinel sites. Senegal's health 
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data are often structured according to the flowchart in 
figure 1 giving an overall view of the disaggregation of the 
MSAS database, even if this organization does not have a 
long enough time series for the needs of this study. The 
health data obtained so far contains the number of cases of 
the disease recorded on an annual scale and by region. The 
health databases (Table 1) were made available to us by 
the DGS (Direction Générale de la Santé). However, even 
though other diseases including Rift Valley Fever (RVF) 
are priority diseases in this study, we were unable to obtain 
observational data.  
 
Table 1: Health data used. 

 
 
 

I.2. Climate data 

In this study, we have used climate data from the WFDEI 
as reference data (Dee et al., 2011) and the multi-model 
ensemble mean of fifteen (15) global circulation models, 
for instance, Coupled Model Intercomparison Project, 
version 6, where bias correction technique, the CDF-t 
(Cumulative Distribution Function transform) method 
(Michelangeli et al., 2009), was applied. The WATCH 
Forcing Data methodology applied to ERA-Interim data 
(WFDEI), Weedon et al., 2014, is produced from Watch 
Forcing Data (WFD) and ERA-Interim reanalyses via 
sequential interpolation at 0.5° resolution, an altitude 
correction and monthly scale adjustments based on 
monthly observational data from CRU (Climate Research 
Unit) TS3.1/TS3.21 and GPCCv5/v6. Details of the three 
products can be found in Dee et al., 2011 for ERA-Interim 
and Weedon et al., 2014 for WFDEI. The variables have a 
daily time step with a spatial resolution of 0.75° (~80 km) 
and 0.50° (~55 km) respectively for ERA-Interim and 
WFDEI, being qualified as low resolution and medium 
resolution.  For the heat indices calculation, knowing that 
the required variables such relative humidity are not 
available in our WFDEI database, we alternatively use the 
ERA5 data (the European Re-Analysis, 5 th Generation). 
ERA5 (Hersbach et al. al, 2020) is a climate reanalysis 
dataset developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). It provides a 
comprehensive and consistent global view of the Earth's 
atmosphere, land surface, and oceans over the past few 
decades, based on historical observations and atmospheric 
models. ERA5 incorporates a wide range of variables, such 
as temperature, humidity, wind, precipitation, and 
pressure, with high spatiotemporal resolution. It is widely 
used in climate research and provides valuable information 
for studying past climate conditions and understanding 
climate variability and change. 
In addition, for the meningitis study with respect to 
atmospheric parameters, we use the Aerosol Optical Depht 

(AOD) from the AERONET (AErosol RObotic NETwork) 
website https://aeronet.gsfc.nasa.gov/. 
Moreover, about ten global climate models from CMIP6 
(Coupled Model Intercomparison Project, version 6) for 
the precipitation and temperature variables are used. These 
simulations are available in daily time steps for the period 
1850-2014 (Historical) and 2015-2100 (projections). The 
available models are shown in Table 2. They are available 
at different spatial resolutions which, for example, ranges 
from 100 km (EC-Earth3) to more than 350 km 
(CanESM5). The data sets (observed and simulated) used 
were interpolated on the grid finally to make them 
consistent in the analysis and interpolation. The period 
1985 to 2014 was chosen as the reference period. 
 
Table 2: CMIP6 models, their institutions and countries of 
origin, and their resolution. 
 

 
To study potential future impacts, the IPCC 
(Intergovernmental Panel on Climate Change) in its 6th 
report (Zhongming et al., 2021) relies on scenarios called 
Shared Socio-economic Pathways (SSP) or "economic 
trajectories". Economists and sociologists assess the costs 
of adaptation and mitigation related to climate change 
according to different socio-economic scenarios 
compatible with Representative Concentration Pathway 
(RCP) scenarios. RCP scenarios are four scenarios of 
radiative forcing pathways until the year 2100. These 
scenarios were established by the Intergovernmental Panel 
on Climate Change (IPCC) for its 5th Assessment Report, 
AR5. An RCP scenario is used to model future climate. In 
the IPCC's Fifth Assessment Report (AR5, published in 
2014) and based on four different assumptions regarding 
the quantification of greenhouse gases to be emitted in the 
coming years (2000-2100), each RCP scenario provides a 
likely variant of the climate resulting from the chosen 

 

Disease Period Spatial scale temporal scale Indicators 
To study the spatial distribution 

of diseases at the national level, 

data is collected for the 14 

regions of Senegal 

 

 

 

 

Données 

mensuelles 

 
 
 
 
 
 
Number of 
confirmed cases 
of the disease 

Malaria  

 

 

2011-2021 

Meningitis 

Dengue 

Severe 

Diarrhea 

Model name Institution and country Spatial resolution 

(Latitude x Longitude) 

ACCESS-CM2 Australian Community Climate and Earth System Simulator Climate Model Version 2 1.9° x1.3° 

ACCESS-ESM1-

5 

Australian Community Climate and Earth System Simulator Earth System Model 

Version 1.5 

1.9°x1.3° 

BCC-CSM2-MR Beijing Climate Center (BCC) and China Meteorological Administration (CMA), Chine 1.1 x1.1 

 BCC-ESM1  Beijing Climate Center (BCC) and China Meteorological Administration (CMA), 

Chine 

2.81º × 2.81º 

CanESM5 Canadian Earth System Model, Canada 2.81º × 2.81º 

CESM2 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 

USA 

1.25º × 0.94º 

CESM2-

WACCM 

National Center for Atmospheric Research 1.25º × 0.94º 

CMCC-CM2-SR5 The Euro-Mediterranean Center on Climate Change, Italie 2.8° x 1.9° 

  

CNRM-CM6 

Centre National de Recherches Météorologiques-Centre Européen de Recherches et de 

Formation Avancée en Calcul Scientifique, France 

 1.4° x 1.4° 

  

CNRM-CM6_HR Centre National de Recherches Météorologiques-Centre Européen de Recherches et de 

Formation Avancée en Calcul Scientifique, France 

 0.5° x 0.5° 

 CNRM-ESM2-1  Centre National de Recherches Météorologiques-Centre Européen de Recherches et de 

Formation Avancée en Calcul Scientifique, France 

 1.4 º × 1.4º 

 EC-Earth3  EC-EARTH Consortium (27 institutions), Europe  0.70 º × 0.70º 

 EC-Earth3-Veg  EC-EARTH Consortium (27 institutions), Europe  0.70 º × 0.70º 

FGOALS-g3  Flexible Global Ocean‐Atmosphere‐Land System model Grid‐point version 3  2° x 2.3° 

GFDL-CM4 Geophysical Fluid Dynamics Laboratory, USA 2.50 º × 2.00º 

 GFDL-ESM4  Geophysical Fluid Dynamics Laboratory, SUA  1.25 º × 1.00º 

IITM-ESM Indian Institute or Tropical Meteorology, India 1.9 ° x 1.9° 

INM-CM4-8 Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russie 2° x 1.5° 

INM-CM5-0 Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russie 2° x 1.5° 

 IPSL-CM6A-LR  Institut Pierre-Simon Laplace, France 2.5° x 1.3° 

KACE-1-0-G National Institute of Meteorological Sciences, Korea  1.4° x 1.9° 

KIOST-ESM Korea Institute of Ocean Science and Technology, Korea 1.875° x 1.875° 

MIROC6 Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan 1.4° x 1.4° 

MIROC-ES2L Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japon 2.8° x 2.8° 

MPI-ESM1-2-HR Max Planck Institute for Meteorology, High Resolution, Allemangne 0.9° x 0.9° 

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Low Resolution, Allemangne 1.9° x 1.9° 

MRI-ESM2 Meteorological Research Institute, Japon 1.1° x 1.1° 

NESM3 Nanjing University of Information Science and Technology, Nanjing, 1.9° x 1.9 

NorESM2-LM Norwegian Meteorological Institute Low Medium Norway 2.5° x 1.9° 

NorESM2-MM Norwegian Meteorological Institute Medium Medium Norway 0.9° x 1.3° 

TaiESM Research Center for Environmental Changes, Taiwan 1.3° x 1° 
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emission level assumption. The four scenarios are named 
after the resulting radiative forcing range for the year 2100: 
RCP 2.6 corresponds to a forcing of +2.6 W/m² (Watt per 
square meter), RCP 4.5 corresponds to +4.5 W/m², and 
similarly for RCP6 and RCP8.5. The higher this value, the 
more energy the Earth-atmosphere system gains and 
warms up. These scenarios, called SSPs, are presented in 
terms of the efforts required for adaptation and mitigation 
if the world follows such scenarios. The latest generation 
of CMIP, IPCC-AR6 (December 2021), includes 31 
modeling groups. 
In this study, we particularly focus on three climate change 
scenarios in CMIP6: the optimistic scenario (ssp126), the 
moderate scenario (ssp245), and the extreme or pessimistic 
scenario (ssp585) (Table 3). 
 
Table 3: CMIP6 Data, Scenarios, and Time Scales 

 

II.3.        METHODS 

II.3.1.   The malaria model  
The LMM (Liverpool Malaria Model) is a dynamic model 
of malaria based on daily time series of rainfall and 
temperature. The different components of the malaria 
transmission model and the calibration of the parameters 
are described in more detail by Hoshen and Morse (2004) 
then Ermert (2011). The LMM is a mathematical-
biological model of parasite dynamics, which includes 
intra-vector phase dependent on metrological conditions 
and phase within the host independent of metrological 
conditions. The mosquito population is simulated using 
larval and adult stages, the number of eggs deposited in the 
breeding sites and the larval mortality rate according to the 
rains of the previous 10 days. The mortality rate of adult 
mosquitoes and the egg-laying/biting cycle (called the 
gonotrophic cycle) depend on temperature. The process of 
parasite transmission between humans and mosquitoes is 
modelled with a temperature dependence for the parasite 
reproduction rate (sporogonic cycle) and mosquito biting 
rate. The two cycles evolve based on the number of 
"degree-days" above a certain temperature threshold. 
Respectively, the gonotrophic and sporogonic cycles take 
about 37 degree-days and 111 degree-days with a 
threshold of 9°C (18°C) (Caminade et al., 2011). Climate 
and health studies have used LMM simulations in southern 
Africa, including Zimbabwe, Botswana and across the 
African continent (Morse et al., 2005; Jones et al., 2010). 
The output variables of the model are, among others, the 
incidence, prevalence, mosquito population, etc. The 
current version of the model (LMM2010) has shown 
significant improvements in the simulation of malaria 
dynamics in sub-Saharan African countries including 
Senegal. This version has also been used by [48-50] to 
assess the risk posed by future climate change on malaria, 
including Senegal with the work of Diouf et al. (2013; 
2017; 2020). 
 

II.3.2 Poisson regression modeling applied to 
meningitis 
Poisson regression is a useful tool for analysing incidence 
rates in studies of cohorts or groups of individuals (number 
of events related to a number of person-years of exposure). 
It is also useful for comparing event counts (such as the 
average number of events for a patient over a follow-up 
period). What is less well known is that the use of Poisson 
regression facilitates time trend analyses of baseline risks, 
relative or absolute excess risks, and other aspects of risk 
functions that can be difficult to assess with other methods. 
The Kaplan-Meier method, the logrank test and the Cox 
model each have their respective parallel in the analysis of 
grouped data: instantaneous risks, relative risks on 
grouped data and Poisson regression grouped by intervals. 
This approach makes it possible to present the 
instantaneous speed of occurrence of events, which is 
potentially more meaningful for clinicians, and to consider 
certain constraints more easily. Indeed, for example, this 
approach facilitates the consideration of time-dependent 
variables, a time-dependent effect, competing risk or 
interval exposure or in the calculation of excess mortality. 
 
II.3.3.     Dengue fever relative vectorial capacity (rVc) 
model. 
An rVc model describes the ability of a vector to spread 
disease among humans and takes into account host, virus, 
and vector interactions (Garrett-Jones, 1964; Liu-
Helmersso, 2012) assuming that these three parameters are 
present. It represents the average daily number of 
secondary cases generated by a primary case introduced 
into a fully susceptible population (Garrett-Jones, 1964). 
From the classical definition of Anderso et May, 1991, the 
rVc model can be expressed as follows: 
rVc= α2 βhβme-μmn)/μm; where: 
 

- 1) α =Biting rate (Scott et al., 2000); 
- 2) βm = probability of infection from humans to 

vector per bite (Lambrechts et al., 2011); 
- 3) βh = probability of transmission from vector to 

human per bite (Lambrechts et al., 2011; Scott et 
al., 2000) ; 

- 4) η = Extrinsic incubation period (Focks et al., 
1995; Watts et al., 1987; McLean et al., 1974) ; 

- 5) μm = Mortality rate (Yang et al., 2009). 
 

The equations of these five parameters are respectively 
given below: 
 

1) Biting rate (α) 
α(T)=0.0043T+0.0943       for   21°C ≤T<=32°C 

 

2) The probability of infection from humans to 
vector per bite (βm) 

(βm) = 0.0729T-0.9037       for        12.4°C <=T≤26.1°C 
(βm) =1                                   for      26.1°C <T<32.5°C 
 
 

3) The probability of transmission from vector to 
human per bite (βh) 

 
(βh)=0.001044T(T-12.286)(32.4461-T)1/2        for   
12.286°C ≤T≤32.461°C 
 
 

4) Extrinsic incubation period (η) 

Simulations  Scenarios Available period Selected Period 

Climatological reference  1850-2014 1985-2014 

Projections   ssp126 
ssp245 
ssp585 

 
2015-2100 

2015-2080 
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η (T)=4+e5.15-0.123T      for   12°C ≤T≤36°C 
 

5) Mortality rate (μm) 
μm(T)=0.8692-0.1590T+0.01116T2-
3.408x10(4)T3+3.809x10-6xT4    for 10.54°C ≤T≤33.41°C 
II.4.     Heat calculation Heat Wave Index 
The heat and discomfort index calculation are applied to 
the multi-model ensemble mean of CMIP6 projections as 
part of the study of future changes in heat stress and risk 
regions under global warming scenarios at different time 
scales in Senegal. To assess the stress induced by the 
combined effects of temperature and humidity, we applied 
the NOAA (National Oceanic and Atmospheric 
Administration) NWS (National Weather Service) heat 
index formulation (hereafter referred to as HI) developed 
by Rothfusz (1990), which is given by the following 
equation: 
 

[hi,confort] = heat_index(Tf,RH); 
HI=-42.379 + 2.04901523*T + 10.14333127*RH - 

0.2247554T*RH-6.8378*10-3*T2 – 5.48172*10-2*RH2 + 
1.229*10-3T2*RH + 8.528*10-4T*RH2 – 1.99*10-

6*T2*RH2 
  
where T is the temperature in degrees Fahrenheit (°F) and 
RH is the relative humidity in percent. This formulation 
was developed through multiple regression analysis of 
Steadman's (1979) equation for apparent temperature 
(which considers many physiological and environmental 
factors) to adopt two commonly used and conventional 
variables (i.e., ambient air temperature and relative 
humidity). HI is therefore the heat index expressed in 
apparent temperature in degrees Fahrenheit. 
This full regression equation is only appropriate when the 
temperature and humidity values generate an HI greater 
than 80°F (i.e., 27°C). In this case, a number of 
adjustments are applied to this formula depending on the 
temperature and relative humidity values. 
First, if RH is less than 13% and T is between 80°F and 
112°F, the following adjustment is subtracted from HI: 
ADJUSTMENT = ((13-RH)/4)*((17-abs(T-95))/17)1/2 ; 
Second, if RH is greater than 85% and T is between 80°F 
and 87°F, the following adjustment is added to 
 HI: 
ADJUSTMENT = ((RH-85)/10)*((87-T)/5) ; 
This function calculates the heat index from the 
temperature in degrees Fahrenheit and relative humidity. 
The heat index is given in Fahrenheit and comfort is given 
in 4 classes: "uncomfortable" =1; “extreme discomfort” 
=2; "hazard"=3; "extreme danger"=4. 
Within the framework of modeling, using various indices 
of priority diseases selected during the project's launch 
workshop, we assess the level of transmission of these 
diseases in Senegal using different tools/approaches 
(Table 4). 
 
Table 4: Priority Diseases and Tools/Approaches 

 

      RESULTS AND DISCUSSION 

III.1 Mapping of observed diseases over Senegal (2011-
2021) 
The spatial distribution of different recorded diseases 
between 2011 and 2021 in Senegal is illustrated in figure 
1. These figures represent the spatial variations of malaria, 
dengue, meningitis, and severe diarrhea (bloody diarrhea) 
in Senegal, respectively. The southern and southeastern 
parts are heavily affected by malaria (figure 1a). For 
dengue (figure 1b), the northwest (Saint-Louis) and the 
central-western part of the country (particularly Diourbel) 
are the most affected areas. Meningitis (figure 1c) is 
prevalent in the central and southern parts of the country, 
as well as in the west, specifically in Dakar. The high 
number of cases of diseases could also be linked to the 
regularity of data collection. Severe diarrhea (or bloody 
diarrhea) is mainly observed in the eastern part of the 
country but also in the central-western region (Dakar, 
Thies, and Diourbel). In particular, the high occurrence of 
certain diseases in regions like Dakar, despite unfavorable 
climatic conditions, can be explained by the fact that it is 
in Dakar where people have more of a culture of seeking 
medical diagnosis and treatment, resulting in more regular 
data collection. This is the case for meningitis, as 
hospitalizations for meningococcal meningitis at Fann 
Hospital (Dakar) are partly due to its status as a national 
pediatric reference center. As such, it receives most 
children from the Dakar region and occasionally from 
other parts of Senegal. However, for modeling purposes, 
only climatic factors are considered, and the impact 
models do not consider socio-economic parameters as in 
the case of observations. 
Table 5 provides a summary of the climate-sensitive 
diseases included in the study and the most vulnerable 
regions considering the climatic parameters influencing 
the presence and/or development of each disease. 
 
Table 5: Priority climate-sensitive diseases 

 

 

                                          Diseases Impact model or Tool 
 

 
 
 
Communicable diseases 
 

 
 
Vector-borne diseases 
 

Malaria Liverpool Malaria Model 
(LMM) 

Dengue relative vectorial capacity 
(rVc) model of dengue 

Airborne diseases Meningitis 
 

Poisson regression model 

Chronic diseases (Cardiovascular diseases, 
Respiratory diseases, kidney diseases, 
Neurological diseases, Metabolic diseases) 

Comfort index 
 Non-communicable 

diseases 

Disease Climatic parameters Regions or most affected areas 

Malaria Rainfall, temperature, 

humidity, and wind 

 

Southern and Southeastern Regions: Ziguinchor, Sédhiou, 

Kolda, and Kédougou 

Central Regions: Kaolack, Kaffrine, Fatick, Diourbel, Thiès, 

and Dakar 

Meningitis Temperature, humidity, wind, 

and dust 

Northern and Northwestern Regions: Matam, Louga, and 

Saint-Louis 

Central Regions: Dakar, Thiès, and Diourbel 

Dengue 

 

Rainfall, temperature, 

humidity 

       Northern and Northwestern Regions: Matam, Louga, 

and Saint-Louis 

Eastern Regions: Tambacounda and Kédougou 

Diarrheal diseases Rainfall, temperature Northern Regions: Matam  

Central Regions: Kaffrine, Tambacounda, Thiès, Dakar, and 

Diourbel 

Non-

communicable 

diseases sensitive 

to heatwaves 

Temperature, humidity, wind, 

and solar radiation 

 

Northern Regions: Matam, Louga 

East and Southeast: Tambacounda and Kédougou 
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Fig. 1: Spatio distribution of climate-sensitive diseases in 
Senegal between 2011-2021: a) Malaria, b) Dengue, c) 
Meningitis, and g and d) Severe diarrhea. 

 

I.3. Malaria 

In figure 2, we analyse the spatio-temporal variability of 
malaria incidence simulated by the LMM model forced by 
daily precipitation and temperature data. We illustrate the 
spatio-temporal distribution of malaria in Senegal 
corresponding to that obtained previously with rainfall and 
temperature at WFDEI in Senegal. In terms of spatial 
variability, there is a clear difference in the intensity of the 
malaria incidence signal between the northern and 
southern regions of Senegal. A very intense signal is 
observed in the southern part of Senegal, while in the far 
north, the signal is very weak. Indeed, the strong 
occurrence only extends around 15 ºN. However, the 
important transmission occupies practically the whole 
country with of course maximum values between 11 ºN 
and 15 ºN. A particularly high signal is observed for the 
incidence during the September-October-November 
season with a maximum in October. Knowing that the 
LMM model only takes precipitation and temperature into 
account, this very intense signal should be explained by 
extreme values of rainfall and/or temperature recorded 
locally. 
The seasonal cycle of the simulated incidence of malaria is 
represented in figure 3. The analysis of the seasonal 
evolution shows an incidence rate close to zero during the 
months of January to June. From June, we see an increase 
in incidence which reaches the maximum median peak in 
October with a rate of more than 60%. Malaria 
transmission follows the rhythm of rainfall. The rainy 
season is the period of high mosquito density. Other 
studies have shown that the peak of malaria mostly follows 
the peak of rainfall. Thus, the season of high malaria 
transmission has a maximum shifted by one to two months 
compared to that of precipitation. The lag between the 
peaks of rain and the incidence of malaria is explained by 
the fact that intermittent rains (or showers too) in August 
can on the one hand reinforce the development of the 
population of mosquito vectors triggered at the onset of the 
first rains, but these heavy rains in August largely drown 
the eggs deposited on surface waters by female 
mosquitoes. In addition, the low temperatures generated 
by the succession of rainy days are not favorable to the 

rapid growth of vectors, from larvae to infectious mature 
mosquitoes through the nymph stage. On the other hand, 
with a delay of 1 to 2 months, the mosquito vectors saw 
their living conditions improved with the wastewater, the 
strong heat of this still humid month (humidity increases 
the longevity of mosquitoes), to this add environmental 
conditions with the availability of large breeding places 
and vegetation cover that constitute mosquito nests. This 
delay is quite logical in relation to what is known of the 
biology of the Anopheles vector and of the sporogonic 
cycle of the plasmodium parasite. 
Figures 4a and 4b illustrate consistency between the 
malaria incidence simulated by the LMM model forced by 
the WFDEI (reference data) and that obtained from the 
CMIP6 data, both with the historical and with the different 
scenarios. For the spatial variability, there is still a clear 
difference in the intensity of the signal of the malaria 
incidence between the northern regions and the southern 
of Senegal. The latitudinal gradient of the distribution of 
malaria in Senegal would be still maintained. By 
comparing with historical data (figures 3a and 3b), we find 
that the simulated malaria incidence decrease likely tends 
to prevail over many portions of Senegal, in the north and 
the centre, and this, even in the near future (2015- 2044), 
but especially in the far future (2050-2080). The 
magnitude of the decrease is more important with the 
ssp245 and ssp585 scenarios (figures 3d, 3e, 3g, and 3h). 
Such a decrease in malaria in the far future appears to be 
associated with climate change (Gething et al. 2010; 
Beguin et al. 2011; Diouf et al., 2021). Thus, temperatures 
that are too hot could have a negative impact on the adult 
mosquitoes’ survival by starting to reduce the population 
of adult mosquitoes in the model and this implies a 
decrease in malaria transmission. Beguin et al., 2011 
showed an opposite effect of climate change on the global 
distribution of malaria, and they show a decrease in 
simulated malaria behaviours over the Sahel regardless of 
the period and scenario considered which are related to 
temperature effect. However, looking at the southern part 
of Senegal in figures 3c and 3f and comparing with figure 
4a as a point of reference, malaria is expected to increase 
in the southern part of the study area. This agrees with the 
results of previous studies on West Africa such as Peterson 
(2009) who showed that the epidemic fringe would be 
shifted to the south for most of malaria models. It is 
expected that during the 2080s, the climate will become so 
unsuitable in the northern part of the Sahel including the 
northern regions of Senegal, without more people at risk 
(Caminade et al. 2014). 
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Fig.2. Spatial distribution and seasonal evolution of 
malaria incidence for the period 1979-2018: LMM model 
simulations based on WFDEI data. 

 
Fig.3. Intra-annual variation in incidence for the period 
1979-2018: LMM model simulations based on WFDEI 
data. 

 
Fig.4. Spatial distribution of malaria incidence: a) for the 
historical period 1985-2013 and for simulations using 
WFDEI data as reference, b) for the historical period 
1985-2013 and for simulations using CMIP6 data, e-h) for 
the 2015-2080 projections and for the simulations based 
on data respectively from scenarios SSP126, SSP245, 
SSP585 of the CMIP6. 

 

I.4. Dengue 

Figure 5a shows that the North-East, notably a good part 
of Saint-Louis, Matam and Louga, the East of the country, 
i.e., Tambacounda and certain parts of the central regions, 
are the most affected by the high occurrence of the rVc 
index of dengue fever. As seen before with another vector-
borne disease such as malaria, figures 5b, 5c and 5d 
relating to dengue projections show an opposite effect of 
climate change on the future distribution of dengue in 
Senegal. For example, figure 5d (extreme scenario ssp585) 

shows a drastic decrease in the simulated index (rVc) of 
dengue in eastern Senegal, which is also observed but to a 
lesser extent with the optimistic scenarios (ssp126, figure 
5b) and medium (ssp245, figure 4c). This result on the 
future reduction of dengue fever in certain regions of the 
country is linked to an effect of extremely hot temperature. 
Thus, too hot temperatures could have an impact on the 
survival pattern of adult mosquitoes starting to kill many 
adult mosquitoes in impact models and this implies a 
decrease in the transmission of certain vector-borne 
diseases such as malaria and dengue fever. However, 
figures 4a and 4c show that dengue fever is expected to 
spread in southern Senegal in the long term in Ziguinchor 
and Sedhiou. 

 
Fig.5. Spatial distribution of rVc (relative vectorial 
capacity) in Senegal: a) historical period (1950-2014), 
and projections (2015-2080), b) sssp126 scenario, c) 
ssp245 scenario and d) ssp585 scenario. 

 

I.5. Meningitis 

In figure 6a, using the daily averaged surface weather 
variables (zonal wind at 10m, southerly wind at 10m and 
relative humidity and temperatures at 2m) from the 
European Center for Medium-Range Weather Forecasting 
(ECMWF) which are ERA-Interim data (Dee et al., 2011) 
are used, as well as satellite products of in situ data (see 
Table in the July activity report). There is a high 
concentration of the number of meningitis cases when the 
temperature is high, with a temperature range between 
25°C and 30°C. The high concentration of the number of 
meningitis cases corresponds to a low relative humidity 
rate, between 20% and 40% (figure 6b). In general, low 
humidity is a necessary and not sufficient condition for the 
onset and evolution of the meningitis season, on the other 
hand, high humidity (arrival of the monsoon) is a sufficient 
condition to stop the transmission. On the other hand, the 
concentration of the number of meningitis cases 
corresponding to a high AOD was expected, which is not 
the case in figure 6c. We note that the temperature is high 
there (about 32°C), the humidity less than 30% and the 
negative southerly wind or harmattan (figure 6d). 
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Fig.6. Relationship between the number of cases of 
meningitis and climatic parameters (2006-2020): a) 
temperature, b) relative humidity and c) AOD. 

 
The histograms of the health climate variables 
(temperature, relative humidity, AOD and cases of 
meningitis) are given in the 1st column of figure 7. These 
histograms give an overview of the distribution of each 
variable. They show a significant variability of the 
observations, which requires a transformation of the series 
by applying the logarithm (2nd column figure 7). The log 
function applied to the data decreases the variability 
between observations. The application of the log makes it 
possible to have a histogram which resembles that of the 
observations generated by a normal law mechanism, or 
Gauss's law, where the probability density gives a bell-
shaped curve symmetrical with respect to the axis of the 
ordered. Knowing that the variability of our data or the 
variance is very large, it is recommended to work with the 
transformed data (by log application). 
 

 
Fig.7. Histograms of climate and health variables (2006-
2020). 1st column (a, c, e, and i): temperature, relative 

humidity and AOD and number of cases of meningitis 
respectively, and 2nd column: Histograms of the variables 
after transformation of the series by application of log. 

I.6. Chronic – non communicable diseases to 
heat waves. 

 
Heatwaves can exacerbate the effects of climate-sensitive 
non-communicable diseases (NCDs), which are chronic 
illnesses whose incidence or severity can be influenced by 
the climate. Here are some examples of NCDs that can be 
aggravated by heatwaves: 
• Cardiovascular diseases: Heatwaves can exert additional 
stress on the cardiovascular system. High temperatures can 
increase heart rate, blood pressure, and blood viscosity, 
which can worsen symptoms of pre-existing heart 
conditions such as angina and heart attacks. 
• Respiratory diseases: Individuals with respiratory 
diseases such as asthma and chronic obstructive 
pulmonary disease (COPD) may experience increased 
breathing difficulties during heatwaves. High temperatures 
can worsen airway inflammation and increase the risk of 
respiratory crises. 
• Kidney diseases: Individuals with kidney diseases, 
including chronic kidney failure, may be more vulnerable 
to heatwaves due to reduced ability to regulate body 
temperature and eliminate metabolic waste. High 
temperatures can worsen dehydration and stress on the 
kidneys. 
• Neurological diseases: Individuals with neurological 
diseases such as Parkinson's disease and multiple sclerosis 
may be heat-sensitive. Heatwaves can worsen neurological 
symptoms such as fatigue, muscle weakness, and 
coordination problems. 
• Metabolic diseases: Individuals with metabolic diseases, 
including diabetes, may be more vulnerable to heatwaves 
due to increased difficulties in regulating blood sugar 
levels. High temperatures can increase insulin resistance 
and the risk of metabolic complications. 
It is important for individuals with climate sensitive NCDs 
to take precautions during heatwaves, such as staying 
hydrated, avoiding outdoor activities during the hottest 
hours of the day, wearing lightweight clothing, and 
seeking cool environments. Additionally, healthcare 
systems and health authorities should be prepared to 
handle increased healthcare needs during periods of 
extreme heat to provide adequate support to vulnerable 
individuals with NCDs. 
 
In figure 8, categories of comfort index or thermal stress 
are represented using temperature and humidity data from 
ERA5 to calculate the heat index before deducing these 
comfort index categories. The Comfort Index (CI) is a 
measure used to assess the comfort level experienced by 
individuals in a specific environment, typically related to 
weather or thermal conditions. It is often calculated based 
on factors such as air temperature, relative humidity, wind 
speed, and sometimes other variables like radiant 
temperature. The Comfort Index helps to gauge how 
comfortable or uncomfortable a given climate or weather 
condition is for human beings. It is especially relevant in 
assessing thermal comfort, which refers to the level of 
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satisfaction a person experiences in terms of their body 
temperature in relation to the surrounding environment. 
Various Comfort Index scales exist, and they are designed 
to categorize the comfort level into different ranges, such 
as comfortable (or safe), uncomfortable (caution), extreme 
discomfort (or extreme caution), and dangerous conditions 
(or danger). These scales can be used to interpret the 
Comfort Index values and provide information about the 
potential health risks associated with certain weather 
conditions. Figures 8a-d represent the CI for the four 
seasons, namely December-January (DJF), March-May 
(MAM), June-August (JJA), and September-November 
(SON). In Figure 8a, it is noted that for most of Senegal, 
conditions of discomfort but without danger are observed, 
while in the northeastern part of Senegal, the category of 
extreme discomfort prevails. The areas of extreme 
discomfort extend over the western half of the country 
during the MAM season, while the eastern half, 
represented by the east facade, experiences extreme 
caution or danger conditions in the extreme eastern part of 
Tambacounda (figure 8b). During the JJA season (figure 
8c), extreme discomfort (caution) conditions are observed 
throughout the country, except in the northeast, 
particularly in a significant portion of Saint-Louis and 
Matam, where extreme caution or danger conditions 
appear. Similar conditions to JJA are observed in the 
country during the DJF season (figure 8d), but a signal of 
extreme caution conditions is located in the extreme 
northeast of Saint-Louis and Matam. 
 
Regarding projected heatwaves in Senegal, the results are 
presented in figure 8. For the DJF season (figure 8e, i and 
m), uncomfortable conditions may prevail regardless of 
the scenario considered, but it remains relatively safe. 
However, health authorities should remain vigilant as the 
southeast of Senegal remains under the influence of the 
category of extreme discomfort. As for the MAM season 
(figure 8f, j and n), conditions of extreme discomfort, and 
even danger, extend across the country. During this MAM 
season, extreme danger conditions are noted in the eastern 
part of the country, including Matam, Tambacounda, and 
Kedougou. Moreover, with the scenario ssp585, nearly the 
entire eastern part of the Podor-Kolda line becomes a high-
risk zone. In JJA season (figure 8g, k and o), extreme 
discomfort conditions, which require caution and may 
pose potential dangers, affect the central, eastern, and 
northeastern parts of the country. Lastly, for the SON 
season (figure 8h, l and p), conditions remain mostly like 
those observed during DJF season on the country, with a 
signal of near-extreme danger conditions localized in the 
northeastern regions of Saint-Louis and Matam. 
 

 

 
Fig.8. Spatial distribution of seasonal comfort index (CI) 
class or heat stress categories in Senegal for the reference 
period (1985-2014) for ERA5 and the projected period 
(2045-2080). The data pertains to three specific scenarios 
(SSP126, SSP245, SSP585) originating from the ensemble 
models of the CMIP6. HI stands for heat index and E-
Caution stands for Extreme Caution. DJF=December-
January-February; MAM=May-April-May; DJA=June-
July-August; SON=September-October-November. 

In summary, climate variability and change can impact 
human health. Whatever the scenario, it is almost certain 
that global warming will continue, and there is a high 
probability that the observed increase in heat will impact 
the climate-sensitive disease. It is very likely that the 
frequency of extreme heat will increase during the 21st 
century with an increasing gradient towards southern 
regions. Senegal faces high climate risks due to mean 
annual temperatures projected to increase by 1.1 to 3.1°C 
by the 2060's, and 1.7 to 4.9°C by the 2090's, with 
projected rates of warming faster in the interior than in 
those areas closer to the coast; and a greater proportion of 
precipitation during heavy rainfall events (World Bank. 
2020). The mapping of some climate-sensitive diseases in 
this study and the analysis of risks related to climatic 
parameters show that the southern regions are mostly 
exposed vector-borne and water-borne. For insistence, the 
results indicate that the risk of vector-borne diseases 
transmission are increase by high increase climate 
parameters such as rainfall and temperature. Otherwise, a 
decrease in certain vector-borne diseases such as malaria 
and dengue fever in certain regions of the country for the 
far future and for the extreme scenario are highlighted. 
This could be explained by an extremely hot temperature 
effect leading to a high mosquito mortality rate. Thus, too 
hot temperatures could have an impact on the survival 
pattern of adult mosquitoes starting to kill many adult 
mosquitoes in impact models and this implies a decrease 
in the transmission of certain vector-borne diseases such 
as malaria and dengue fever. However, the preliminary 
results also show that certain pathologies such as dengue 
should spread in the south of Senegal in the long term in 
Ziguinchor and Sedhiou. 
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Climate change and their impacts on the Senegalese 
population are aggravating factors of poverty. The 
Emerging Senegal Plan (PSE) 2035, i.e., the national 
roadmap for growth, emphasizes the need to reduce the 
vulnerability of populations to shocks resulting from 
climate change, making the protection of vulnerable 
groups one of the pillars of its strategy. Reliable 
information of this study on expected future climate form 
the basis for planning and implementing adaptation 
measures to mitigate the consequences of regional climate 
change on health sector. The Comfort Index used in this 
study would be valuable in fields like meteorology, 
environmental science, and architecture, as it helps in 
understanding the impact of weather conditions on human 
well-being and can inform decisions related to building 
design, urban planning, and outdoor activities. 

The main barriers or limits exhibited in the study include 
the problem of reporting health data and the access to 
health structures. The access to quality climate data and 
information in intelligible and usable formats when 
planning or implementing public health policies 
constitutes the first barrier to climate change adaptation in 
Senegal. 
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