Optimization of a hybrid photovoltaic/grid power source system supplemented by a storage unit: case study
- Post by: SOAPHYS-KZ
- 26 décembre 2024
- Comments off

CJKA-ZONGO S – SOAPHYS

http://dx.doi.org/10.46411/jpsoaphys.2024.C24A.008
Section de la parution: Informations de publication
J. P. Soaphys, Vol 4, N°2 (2024) C24A08
Pages : C24A08-1 à C24A08-11
Historique de la version : actuelle
Informations sur les auteurs
Sidiki Zongo1,2,*, Madi Ouedraogo1, Ali Diané1, Fabrice Bado1, Zacharie Sié Kam1, Moussa Sougoti1, Alfa Omar Dissa1, Antoine Béré1
1Laboratoire de Physique et Chimie de l’Environnement, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso,2UNESCO-UNISA
Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria, South Africa
*Corresponding author e-mail : sidiki.zongo[at]ujkz.bf
RESUME
Hybrid power systems have significantly increased in the last decade to supply energy in both industrial and commercial sectors. Because of the abundance of solar radiation, Burkina Faso has the potential to develop solar and or hybrid energy systems to meet its energy demand. In the present case study, solar radiation data have been analysed to optimise and assess a localised hybrid PV-grid system supplemented by a storage unit for CELTIC-BF, a typical small business company. In the proposed hybrid system configuration, the PV system presents a high contribution of about 93.4% of the total power production per day for a solar fraction of 92.9%, whereas the grid contributes about 6.56 %. The investigation also reveals that an excess of 746 kW from PV is obtained and could be re-injected in the network.
Mots-Clés : Hybrid system, photovoltaic, storage unit, optimization, reliability business company
REFERENCES
[1] L. G. Acuña, R. V. Padilla, et
A. S. Mercado, « Measuring reliability of hybrid photovoltaic-wind energy
systems: A new indicator », Renew. Energy, vol. 106, p. 68‑77, juin
2017, https://doi.org/10.1016/j.renene.2016.12.089
[2] Lizica Simona
Paraschiv, Spiru Paraschiv. wind, solar and biomass) to decarbonization and
transformation of the electricity generation sector for sustainable
development. Energy Reports (9), 2023, Pages 535-544. https://doi.org/10.1016/j.egyr.2023.07.024
[3] Spiru Paraschiv, Lizica Simona
Paraschiv. Trends of carbon dioxide (CO2)
emissions from fossil fuels combustion (coal, gas and oil) in the EU member
states from Energy Rep, 6 (8) (2020), pp. 237-242. https://doi.org/10.1016/j.egyr.2020.11.116
[4] Spiru Paraschiv, Nicoleta
Barbuta-Misu, Simona Lizica Paraschiv. Influence of NO2, NO and meteorological conditions on the tropospheric
O3 concentration at an industrial station Energy Rep, 6 (8) (2020), pp.
231-236. https://doi.org/10.1016/j.egyr.2020.11.263
[5] Hamed H.
Pourasl, Reza Vatankhah Barenji, Vahid M. Khojastehnezhad, Solar energy status
in the world: A comprehensive review. Energy Reports (10), 2023, Pages
3474-3493; https://doi.org/10.1016/j.egyr.2023.10.022
[6] Dario.
MaradinAdvantages and Disadvantages of Renewable Energy Sources Utilization.
International Journal of Energy Economics and Policy, 2021, 11(3), 176-183. https://doi.org/10.32479/ijeep.11027
[7] Blesl, M.,
Wissel, S., Mayer-Spohn, O. (2008), Private costs of electricity and heat
generation. Cost Assessment of Sustainable Energy Systems, 1, 1-47
[8] Stamatios
Ntanos, Michalis Skordoulis, Grigorios Kyriakopoulos, Garyfallos Arabatzis ,
Miltiadis Chalikias, Spyros Galatsidas, Athanasios Batzios and Apostolia
Katsarou. Renewable Energy and Economic Growth: Evidence from European
CountriesSustainability 2018, 10, 2626; https://doi.org/.3390/su10082626
[9] Xiang Li, Stefano Moret, Francesco
Baldi, François Maréchal. Are renewables
really that expensive? The impact of uncertainty on the cost of the energy
transition. Computer Aided Chemical Engineering vol.46, 2019, p. 1753-1758. https://doi.org/10.1016/B978-0-12-818634-3.50293-9
[10] Luceny Guzman
Acunaa , Ricardo Vasquez Padillab, Alcides Santander Mercadoa, Measuring
reliability of hybrid photovoltaic-wind energy systems: A new indicator.
Renewable Energy 106. 2017. https://doi.org/10.1016/j.renene. 2016.12.089
[11] Fang-Fang Li,
Jun Qiu & Jia-Hua Wei. Multiobjective optimization for hydro-photovoltaic
hybrid power system considering both energy generation and energy consumption
[12] Qu WJ, Hong H, Li Q, Xuan YM. Co-producing electricity and solar
syngas by transmitting photovoltaics and solar thermochemical process. Appl
Energ. 2018; 217: p.303–13 https://doi.org/10.1016/j.apenergy.2018.02.159
[13] Ruilin Wang, Hui Hong, Jie Sun, Hongguang Jin. A solar hybrid system
integrating concentrating photovoltaic direct steam generation by chemical heat
pump Author links open overlay panel. Energy Conversion and Management Vol.
196, 2019, P. 856-865. https://doi.org/10.1016/j.enconman.2019.06.014
[14]
Wei Sun, Jie Ji, Chenglong Luo, Wei He. Performance of PV-Trombe wall in winter
correlated with south façade design Applied Energy Vol. 88, 1, 2011, P.
224-231. https://doi.org/10.1016/j.apenergy.2010.06.002
[15]
Guoying Xu, Xiaosong Zhang, Shiming Deng Experimental study on the operating
characteristics of a novel low-concentrating solar photovoltaic/thermal
integrated heat pump water heating system. Applied Thermal Engineering Volume
31, Issues 17–18, December 2011, Pages 3689-3695. https://doi.org/10.1016/j.applthermaleng.2011.01.030
[16]
S.M. Shaahid, M.A. Elhadidy . Economic analysis of hybrid
photovoltaic–diesel–battery power systems for residential loads in hot
regions—A step to clean future. Renewable and Sustainable Energy Reviews Vol.
12 (2) 2008, P. 488-503. https://doi.org/10.1016/j.rser.2006.07.013
[18]
http://www.nrel.gov/international/tools/HOMER/homer.htmlS
[19] Ramde,
E.W., Bagre, A., Azoumah, Y., 2009. Solar Energy in Burkina Faso: Potential and
Barriers, 29th ISES Biennial Solar World Congress 2009, ISES, pp. 1781–1795.
[20] W. Zhou,
« Simulation and optimum design of hybrid solar-wind and solar-wind-diesel
power generation systems », 2008, https://theses.lib.polyu.edu.hk/handle/200/686
[21] A.M. Hemeida, M.H. El-Ahmar,
A.M. El-Sayed, Hany M. Hasanien , Salem Alkhalaf, M.F.C. Esmail, T. Senjyu,
« Optimum design of hybrid wind/PV energy system for remote area », Ain
Shams Eng. J., vol. 11, no 1, p. 11‑23, mars 2020, https://doi.org/10.1016/j.asej.2019.08.005
[22] D. Abbes, A. Martinez, G.
Champenois, et J.-P. Gaubert, « Etude d’un système hybride éolien
photovoltaïque avec stockage. Dimensionnement et analyse du cycle de
vie », présenté à European Journal of Electrical Engineering, déc. 2010. https://doi.org/10.3166/ejee.15.659-678
[23] H.
Yang, W. Zhou, L. Lu, et Z. Fang, « Optimal sizing method for stand-alone
hybrid solar–wind system with LPSP technology by using genetic
algorithm », Sol. Energy, vol. 82, no 4, p. 354‑367,
avr. 2008. https://doi.org/10.1016/j.solener.2007.08.005
[24] Colle, S., Abreu, S.L., Ruther, R.. Uncertainty in € economical
analysis of solar water heating and photovoltaic systems. Solar Energy 70,
131–1422001. https://doi.org/10.1016/S0038-092X(00)00134-1
[25]
Ruther, R., Dacoregio, M.M., 2000. Performance assessment of € a 2 kWp
grid-connected, building-integrated, amorphous silicon photovoltaic
installation in Brazil. Progr. Photovolt. Res. Appl. 8,
257–266. https://doi.org/10.1002/(SICI)1099-159X(200003/04)8:2<257::AID-PIP292>3.0.CO;2-P
[26]
John A. Duffie, William A. Beckman. Solar Engineering of Thermal Processes.
John Wiley & Sons, Inc., Hoboken, New Jersey. Madison, Wisconsin October
2005. https://doi.org/10.1002/9781118671603
[27] BARRY
Mamadou Aliou, BALDE Younoussa Moussa, et TAMBA Nicola Milimono, « Study
and optimization of a Photovoltaic-Wind Hybrid System in Telico Mamou »,
août 2022, https://doi.org/10.5281/ZENODO.6963100
