Étude comparative de la digestion anaérobie entre pulpes de la pomme de cajou, bouse de vache et leur codigestion
- Post by: SOAPHYS-KZ
- 31 mars 2021
- Comments off

Section de la parution: Informations de publication
J. P. Soaphys, Vol 2, N°1 (2020) C20A06; 31 Mars 2021
Pages : C20A05-1 à C20A05-8
Information sur les auteurs
Laboratoire de Chimie et de Physique des Matériaux, Université Assane Seck de Ziguinchor, Sénégal
Programme National de Biogaz du Sénégal, Ministère des Mines et de l’Industrie, 120, Cité ASECNA Liberté 6 Extension en face
Immeuble Ferdinand COLY, Dakar, Sénégal
*To whom correspondances should be addressed. E-mail: katafaye86@gmail.com
La digestion anaérobie est un processus naturel biologique de dégradation de la matière organique en absence d’oxygène, pour la production du biogaz. L’étude réalisée porte sur la valorisation des déchets organiques dans la région de la Casamance. Elle consiste à évaluer la production de biogaz par les pulpes de la pomme de cajou (PPC), comparée à celle de la production par la bouse de vache (BV) et celle de la codigestion de ces deux substrats. Trois dispositifs expérimentaux ont été conçus d’une part, pour la détermination de la composition du biogaz et d’autre part, neuf dispositifs expérimentaux basés sur la méthode du déplacement du liquide ont été mis en oeuvre pour la détermination du volume de biogaz. Les essais ont été triplet et les résultats basés sur la moyenne des mesures effectuées. Les expériences ont duré 40 jours dans un bain marie à 38 °C. Les résultats montrent un volume cumulé de 5 100 ml de biogaz avec un pourcentage en méthane de 62,95 % pour les (PPC) ; la (BV) présente un volume cumulé de biogaz de 3 256 ml, composé de 58,52 % de méthane et enfin la codigestion des substrats mélangés (50 % de pulpes de la pomme de cajou et 50% de bouse de vache), donne une production de 6 982 ml en volume cumulé contenant un pourcentage en méthane de 61,30 %. Ces résultats montrent l’importance de la codigestion sur l’amélioration des rendements de productions des substrats lors de la digestion anaérobie
Mots-Clés: Méthanisation, Codigestion, Pulpes Pomme de Cajou, Bouse de Vache.
Afilal, M. E., Elasri, O., and Merzak. Z. 2014. « Caractérisations Des Déchets Organiques et Évaluation Du Potentiel Biogaz (Organic Waste Characterization and Evaluation of Its Potential Biogas). » J. Mater. Environ. Sci. 5(4): 1160-69. | ||||
Ahammad, S. Z.; Gomes, J.; Sreekrishnan, T. R. 2008. « Wastewater Treatment ForproductionofH2S-Free Biogas. » Journal of Chemical Technology & Biotechnology 83: 1163-69. https://doi.org/10.1002/jctb.1927 |
||||
Amani, T., M. Nosrati, and T. R. Sreekrishnan. 2010. « Anaerobic Digestion from the Viewpoint of Microbiological, Chemical, and Operational Aspects – A Review. » Environmental Reviews 18(1): 255-78. https://doi.org/10.1139/A10-011 |
||||
Angelidaki, I., and B. K. Ahring. 2094. « Anaerobic Thermophilic Digestion of Manure at Different Ammonia Loads: Effect of Temperature. » Water Research 28(3): 727- 31. https://doi.org/10.1016/0043-1354(94)90153-8 |
||||
Asam Zaki ul Zaman, Tjalfe Gorm Poulsen, Abdul-Sattar Nizami, Rashad Rafique, Ger Kiely, Jerry D. Murphyet. 2011. « How Can We Improve Biomethane Production per Unit of Feedstock in Biogas Plants? » Applied Energy 88(6): 2013-18. https://doi.org/10.1016/j.apenergy.2010.12.036 |
||||
http://dx.doi.org/10.1016/j.apenergy.2010.12.036. https://doi.org/10.1016/j.apenergy.2010.12.036 |
||||
Awe Olumide Wesley, Yaqian Zhao, Ange Nzihou, Doan Pham Minh, Nathalie Lyczko. 2018. « Anaerobic Co-Digestion of Food Waste and FOG with Sewage Sludge-Realising Its Potential in Ireland. » International Journal of Environmental Studies 75(3): 496-517. https://doi.org/10.1080/00207233.2017.1380335 |
||||
Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. and Vavilin, V.A. « The IWA Anaerobic Digestion Model No 1 (ADM1). » Water science and technology : a journal of theInternational Association on Water Pollution Research 45(10): 65-73. https://doi.org/10.2166/wst.2002.0292 |
||||
Braun, Rudolf. 2007. « Anaerobic Digestion: A Multi-Faceted Process for Energy, Environmental Management and Rural Development. » Improvement of Crop Plants for Industrial End Uses: 335-416. https://doi.org/10.1007/978-1-4020-5486-0_13 |
||||
Burke, Dennis A. 2001. « Dairy Waste Anaerobic Digestion Handbook: Options for Recovering Beneficial Products From Dairy Manure. » Environmental Energy Company: 57. | ||||
Chandra, R., H. Takeuchi, and T. Hasegawa. 2012. « Methane Production from Lignocellulosic Agricultural Crop Wastes: A Review in Context to Second Generation of Biofuel https://doi.org/10.1016/j.rser.2011.11.035 |
||||
Production. » Renewable and Sustainable Energy Reviews 16(3): 1462-76. http://dx.doi.org/10.1016/j.rser.2011.11.035. https://doi.org/10.1016/j.rser.2011.11.035 |
||||
Cheng, Jay J, Zhimin Liu, Jorge Gontupil, and O-seob Kwon. 2014. « Anaerobic Co-Digestion of Rice Straw and Digested | ||||
Swine Manure with Different Total Solid Concentration for Methane Production. » Int J Agric & Biol Eng 7(6): 79-90. | ||||
Crolla, A., Kinsley, C., Sauvé, T., and Kennedy. K. 2011. « Anaerobic Digestion of Manure with Various Co-Substrates. » Wastewaster Centre: 3-6. | ||||
Danson Donald, Obed Ehoneah, Isaac Ayensu, Abena Amponsaa Brobbey, Joseph Kwasi Adu, Samuel Oppong Bekoe. 2020. « Determination of Tryptophan Content in Hausa Koko ( Spicy Millet Porridge ) : A Ghanaian Beverage. » International Journal of Phytopharmacy 9(4): 5287. | ||||
Delgenes, J. P., V. Penaud, and R. Moletta. 2003. « Pretreatments for the Enhancement of Anaerobic Digestion of Solid Wastes. » ChemInform 34(13). https://doi.org/10.1002/chin.200313271 |
||||
Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozziet F. 2012. « Anaerobic Co-Digestion of Organic Wastes. » Reviews in Environmental Science and Biotechnology 11(4): 325-41. https://doi.org/10.1007/s11157-012-9277-8 |
||||
Garnier, Gil. 2014. « Grand Challenges in Chemical Engineering. » Frontiers in Chemistry 2(APR): 1-3. doi: 10.3389/fchem.2014.00017. https://doi.org/10.3389/fchem.2014.00017 |
||||
Hashimoto, Andrew G. 2086. « Ammonia Inhibition of Methanogenesis from Cattle Wastes. » Agricultural Wastes 17(4): 241-61. https://doi.org/10.1016/0141-4607(86)90133-2 |
||||
Hattori, Satoshi, Yoichi Kamagata, and Satoshi Hanada. 2000. « A Strictly Anaerobic , Thermophilic , Syntrophic Acetate- Oxidizing Bacterium. » International Journal of Systematic and Evolutionary Microbiology (50): 1601-9. https://doi.org/10.1099/00207713-50-4-1601 |
||||
Hills, David J. 2079. « Effects of Carbon: Nitrogen Ratio on Anaerobic Digestion of Dairy Manure. » Agricultural Wastes 1(4): 267-78. https://doi.org/10.1016/0141-4607(79)90011-8 |
||||
Hills, David J., and David W. Roberts. 2081. « Anaerobic Digestion of Dairy Manure and Field Crop Residues. » Agricultural Wastes 3(3): 179-89. Igoni A. H., Ayotamuno M. J., Eze C. L., Ogaji S. O. T., Probert S. D., 2008. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy, vol. 85, pp. 430-438. https://doi.org/10.1016/j.apenergy.2007.07.013 |
||||
Inès, M’Sadak Youssef et Zoghlami Rahma. 2012. « Biométhanisation Industrielle Avicole En Tunisie Semi Aride. » Algerian journal of arid environment 2: 16-27. Irini Angelidaki; Wendy Sanders. 2014. « Assessment of the Anaerobic Biodegradability of Macropollutants. » Reviews in Environmental Science and Bio/Technology. | ||||
Kaspar, H. F., and K. Wuhrmann. 2078. « Kinetic Parameters and Relative Turnovers of Some Important Catabolic Reactions in Digesting Sludge. » Applied and Environmental Microbiology 36(1): 1-7. https://doi.org/10.1128/aem.36.1.1-7.1978 |
||||
Manyi-loh, Christy E, Sampson N Mamphweli, Edson L Meyer, and Anthony I Okoh. 2013. « Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy. » Int. J. Environ. Res. Public Health: 4390-4417. https://doi.org/10.3390/ijerph10094390 |
||||
Marchaim, Uri, and Carsten Krause. 2093. « Propionic to Acetic Acid Ratios in Overloaded Anaerobic Digestion. » Bioresource Technology 43(3): 205-203. https://doi.org/10.1016/0960-8524(93)90031-6 |
||||
Mata-Alvarez, Joan, Joan Dosta, Sandra Macé, and Sergi Astals. 2011. « Codigestion of Solid Wastes: A Review of Its Uses and Perspectives Including Modeling. » Critical Reviews in Biotechnology 31(2): 99-111. https://doi.org/10.3109/07388551.2010.525496 |
||||
Moletta, René. 2017. « Méthanisation de La Biomasse. » Techniques de l’Ingénieur 33(0): 1-21. | ||||
Nasir, Ismail M., Tinia I. Mohd Ghazi, and Rozita Omar. 2012. « Anaerobic Digestion Technology in Livestock Manure Treatment for Biogas Production: A Review. » Engineering in Life Sciences 12(3): 258-69. https://doi.org/10.1002/elsc.201100150 |
||||
Nie, Yan Qiu, He Liu, Guo Cheng Du, and Jian Chen. 2008. « Acetate Yield Increased by Gas Circulation and Fed-Batch Fermentation in a Novel Syntrophic Acetogenesis and Homoacetogenesis Coupling System. » Bioresource Technology 99(8): 2989-95. https://doi.org/10.1016/j.biortech.2007.06.018 |
||||
Nikiema Mahamadi, Joseph B. Sawadogo, Marius K. Somda, Desiré Traore, Dayéri Dianou et Alfred S. Traoreet. 2015. « Optimisation de La Production de Biométhane à Partir Des Déchets Organiques Municipaux Optimization of Biomethane Production from Municipal Solid Organic Wastes. » International Journal of Biological and Chemical Science 9: 2743-56. https://doi.org/10.4314/ijbcs.v9i5.43 |
||||
Ning Jing, Mingdian Zhoua, Xiaofang Pana, Chunxing Lic, Nan Lva, Tao Wanga, Guanjing Caia, Ruming Wanga, Junjie Lia, Gefu Zhu. 2020. « Simultaneous Biogas and Biogas Slurry Production from Co-Digestion of Pig Manure and Corn Straw: Performance Optimization and Microbial Community Shift. » Bioresource Technology 282(2016): 37-47. https://doi.org/10.1016/j.biortech.2020.02.122. https://doi.org/10.1016/j.biortech.2019.02.122 |
||||
O’Flaherty, Vincent, Thérèse Mahony, Ronan O’Kennedy, andEmer Colleran. 2098. « Effect of PH on Growth Kinetics and Sulphide Toxicity Thresholds of a Range of Methanogenic, Syntrophic and Sulphate-Reducing Bacteria. » Process Biochemistry 33(5): 555-69. https://doi.org/10.1016/S0032-9592(98)00018-1 |
||||
Park, Nathan D, Ronald W Thring, and Steve S Helle. 2014. « Comparison of Methane Production by Co-Digesting Fruit and Vegetable Waste with First Stage and Second Stage Anaerobic Digester Sludge from a Two Stage Digester. » Water Science & Technology. | ||||
Pavlostathis, S. G. E. Giraldo‐Gomez. 2091. « Kinetics of Anaerobic Treatment: A Critical Review. » Critical Reviews in Environmental Control 21(5-6): 411-90. Raj, Bharat, and Onkar Singh. 2012. « Global Trends of Fossil Fuel Reserves and Climate Change in the 21st Century. » Fossil Fuel and the Environment. | ||||
Sadak, Y M, A Ben M Barek, and R I Zoghlami S Baraket. 2011. « Caractérisation Des Co-Produits de La Biométhanisation Appliquée à La Biomasse Animale. » Revue des Energies Renouvelables 14: 343-56. Schink, B. 2097. « Energetics of Syntrophic Cooperation in Methanogenic Degradation. » Microbiology and molecular biology reviews : MMBR 61(2): 262-80. https://doi.org/10.1128/.61.2.262-280.1997 |
||||
Scott, Anderson T., and Baylee L. Campbell. 2012. « Emissions of Methane and Nitrous Oxide from Natural Sources. » Emissions of Methane and Nitrous Oxide from Natural Sources: 1-225. | ||||
Scully, C, G Collins, and V O Flaherty. 2005. « Assessment of Anaerobic Wastewater Treatment Failure Using Terminal Restriction Fragment Length Polymorphism Analysis. » https://doi.org/10.1111/j.1365-2672.2005.02743.x |
||||
Solomon, Susan. 2007. « Climate Change 2007 : The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. » book Cambridge by Cambridge university press: 104. https://lib.ugent.be/catalog/rug01:001333500. Stadtman, Thressa C., and H. A. Barker. 2051. « Studies on the Methane Fermentation X. » Journal of Bacteriology 62(3): 269-80. | ||||
Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M. M. B.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. (éds.) (2014). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press https://boris.unibe.ch/id/eprint/71452 | ||||
Wilkie, A. C. 2005. « Anaerobic Digestion of Dairy Manure: Design and Process Considerations. » Natural Resource, Agriculture, and Engineering Service,: 301-12. | ||||
Wu Changhua, Crescencia Maurer, Yi Wang, Shouzheng Xue, and Devra Lee Davis. 2009. « Water Pollution and Human | ||||
Health in China Environmental. » Environmental Health 107(4): 251-56. | ||||
Yen, Hong-wei, and David E Brune. 2007. « Anaerobic Co-Digestion of Algal Sludge and Waste Paper to Produce https://doi.org/10.1016/j.biortech.2005.11.010 |
||||
Methane. » Bio resource Technology 98: 130-34. doi:10.1016/j.biortech.2005.11.010 https://doi.org/10.1016/j.biortech.2005.11.010 |
||||
Zhang Panyue, Guangming Zeng, Guangming Zhang, Yin Li, Bibo Zhang, Maohong Fan. 2008. « Anaerobic Co-Digestion of Biosolids and Organic Fraction of Municipal Solid Waste by Sequencing Batch Process. » Fuel Processing Technology 89(4): 485-89. https://doi.org/10.1016/j.fuproc.2007.11.013 |