ÉTUDE COMPARATIVE DES PERFORMANCES DU VETIVER ET DU TYPHA POUR LE TRAITEMENT D’EFFLUENTS PRETRAITES DANS UNE FOSSE SEPTIQUE EN MILIEU RURAL A L’AIDE D’UN REACTEUR BIOLOGIQUE A FLUX HORIZONTAL

  • Post by:
  • 11 décembre 2025
  • Comments off

http://dx.doi.org/10.46411/jpsoaphys.2025.C25.09

Section  de la parution:  Informations de publication

J. P. Soaphys, Vol 5, N°1 (2025) C25A09

Pages :  C25A09-1  à C25A09-6

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v.5.i1
DOI de l’article  : https://dx.doi.org/10.46411/jpsoaphys.2025.C25.09
 
Print ISSN: 2630-0958
 
 
Historique de la version : actuelle

Informations sur les auteurs et affiliations

Abdou Khafor Ndiaye.1, Falilou Coundoul. 2, Abdoulaye Deme.3, Antonina Torrens Armengol 4.

1Université Gaston Berger, Saint-Louis du Sénégal, ndiaye.abdou-khafor@ugb.edu.sn

2Université Gaston Berger, Saint-Louis du Sénégal, falilou.coundoul@ugb.edu.sn

3Université Gaston Berger, Saint-Louis du Sénégal, abdoulaye.deme@ugb.edu.sn

4University of Barcelona, Espagne, antoninatorrens@ub.edu

Corresponding author e-mail : ndiaye.abdou-khafor@ugb.edu.sn  

ABSTRACT

This article explores the ecological treatment of pre-treated effluents from a septic tank at a rural site equipped with a horizontal flow biological reactor. The main objective of the study is to compare the efficiency of two filter bed cells using different plants, Vetiver and Typha, while identifying sustainable solutions tailored to the needs of rural school settings. The methodology combines field surveys to understand the specific conditions of the site with laboratory analyses to assess the pollutant load of the water before and after treatment. The results show that both filters are effective for most of the parameters studied, including chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5). Vetiver exceeded expectations by removing more COD, reaching an average effluent concentration of 74 mg/L, compared to 155 mg/L for Typha. The latter proved to be more effective in filtering suspended solids (SS), with an average concentration of 1 mg/L, compared to 3 mg/L for Vetiver. Both filters surpassed target values for several parameters, including the reduction of faecal coliforms (FC). However, further optimisation is required for phosphate treatment. In conclusion, both filtration systems are effective and suitable for treating pre-treated effluents in rural areas. Vetiver and Typha offer specific advantages, and their combined use could enhance the robustness and efficiency of treatment systems. The findings highlight the need for further research to optimise these ecological systems, particularly for phosphate removal.

Keywords :  Analysis, Suitability, Site, Installation, photovoltaic, Rural areas

REFERENCES

Abaga, N. O. Z.,
Dousset, S., & Munier-Lamy, C. (2021). Phytoremediation potential of
vetiver grass (Vetiveria zizanioides) in two mixed heavy metal contaminated
soils from the Zoundweogo and Boulkiemde regions of Burkina Faso (West Africa).
Journal of Geoscience and Environment Protection, 9(11), 73–88.
https://doi.org/10.4236/gep.2021.911006

Anon. (n.d.). IBM
SPSS Statistics. Retrieved December 12, 2023, from
https://www.ibm.com/products/spss-statistics

Arias, C. A., Del
Bubba, M., & Brix, H. (2001). Phosphorus removal by sands for use as media
in subsurface flow constructed reed beds. Water Research, 35(5), 1159–1168.
https://doi.org/10.1016/S0043-1354(00)00368-7

Badejo, A. A.,
Omole, D. O., & Ndambuki, J. M. (2018). Municipal wastewater management
using Vetiveria zizanioides planted in vertical flow constructed wetland.
Applied Water Science, 8, 1-6.

Bourrier, R., Satin, M., & Selmi, B.
(2010). Guide technique de l’assainissement.
Éd. le Moniteur.

Bridgewater, L. L.,
Baird, R. B., Eaton, A. D., Rice, E. W., American Public Health Association,
American Water Works Association, & Water Environment Federation (Eds.).
(2017). Standard methods for the examination of water and wastewater (23rd
ed.). Washington, DC: American Public Health Association.

Brix, H. (1997). Do
macrophytes play a role in constructed treatment wetlands? Water Science and
Technology, 35(5), 11–17.

Ciria, M. P.,
Solano, M. L., & Soriano, P. (2005). Role of macrophyte Typha latifolia in
a constructed wetland for wastewater treatment and assessment of its potential
as a biomass fuel. Biosystems Engineering, 92(4), 535-544.

Desa U. N. (2016).
Transforming our world : The 2030 agenda for sustainable development. United Nations
: New York, NY, USA.

Drizo, A., Forget,
C., Chapuis, R. P., & Comeau, Y. (2006). Phosphorus removal by electric arc
furnace steel slag and serpentinite. Water Research, 40(8), 1547–1554.
https://doi.org/10.1016/j.watres.2006.02.001

Golabi, M. H.,
Duguies, M., Chomchalow, N., & Sombatpanit, S. (n.d.). Application of the
Vetiver system for wastewater treatment: An innovative nutrient removal
technology for sewage water treatment in Southern Guam.

Hanna Instruments. (2023). HI98304 Conductivity Tester. Available at : https://www.hannainst.es/parametros/4244-tester-ce.html#/466-rango-0_00_a_19_99_ms_cm

Johansson, L., &
Gustafsson, J. P. (2000). Phosphate removal using blast furnace slags and
opoka-mechanisms. Water Research, 34(1), 259–265.
https://doi.org/10.1016/S0043-1354(99)00135-9

Kadlec, R. H., &
Wallace, S. (2008). Treatment wetlands. CRC Press.

LATEU. (n.d.). Laboratoire de Traitement Des
Eaux Usées (LATEU – UCAD).
Retrieved August 17, 2023, from https://lateu.ucad.sn/

Mahmoudpour, M.,
Gholami, S., Ehteshami, M., & Salari, M. (2021). Evaluation of
phytoremediation potential of vetiver grass (Chrysopogon zizanioides (L.)
Roberty) for wastewater treatment. Advances
in Materials Science and Engineering, 2021(1), 3059983.

Morari, F., Dal
Ferro, N., & Cocco, E. (2015). Municipal wastewater treatment with
Phragmites australis L. and Typha latifolia L. for irrigation reuse: Boron and
heavy metals.
Water,
Air, & Soil Pollution, 226, 1-14.

NF ISO 4832 (Juillet 2006). Microbiologie
des aliments – Méthode horizontale pour le dénombrement des coliformes –
Méthode par comptage des colonies (IC).

NF V 08-050 (Février 1999). Microbiologie
des aliments – Dénombrement des coliformes par comptage des colonies obtenues à
30 °C – Méthode de routine (IC : V 08-050).

NF V 08-060 (Mars 1996). Microbiologie des
aliments – Dénombrement des coliformes thermotolérants par comptage des
colonies obtenues à 44 °C – Méthode de routine (IC : V 08-060).

 

article elements

Categories: