Assessment of High-Resolution Regional Climate Models for West Africa Within the Framework of CORDEX
- Post by: SOAPHYS-KZ
- 8 septembre 2025
- Comments off


Section de la parution: Informations de publication
J. P. Soaphys, Vol 5, N°1 (2025) C25A07
Pages : C23A07-1 à C25A07-7
Informations sur les auteurs et affiliations
Moussa Ibrahim MAIGA1,2, Souleymane SANOGO2, Elijah Adesanya ADEFISAN3, Imoleayo GBODE 3
1West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Graduate Research Program on West African Climate System (GRP-WACS)
2Laboratory of Optics of Spectroscopy and Atmospheric Sciences (LOSSA), Faculty of Sciences and Techniques of Bamako (F.S.T.)
3Federal University of Technology of Akure (FUTA)Corresponding author e-mail :*
ABSTRACT
This study evaluated nine regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment-Africa (CORDEX-Africa) to assess their performance in simulating climate patterns over West Africa (WA) from 1970 to 2005. Key climate variables, including precipitation, air temperature, and evaporation, were analyzed using statistical parameters such as correlation coefficient, mean bias (Mbias) compared to ERA5, and root mean square error (RMSE) compared to ERA5 data. The resolution of CORDEX RCMs is standardized to 0.25° × 0.25° grids. Results indicate R2 values of 91% for the Sahel, 95% for the savannah, and 88% for the Guinea Coast for precipitation. Negative Mbias values reveal an underestimation of monthly precipitation by the RCMs compared to ERA5. RMSE values range from 84 to 151.53 for the coastal zone, 38.54 to 78.03 for the savannah, and 27.34 to 42.15 for the Sahel. Evaporation R2 values are 93% for the Sahel, 93% for the savannah, and 86% for the Guinea Coast, with negative Mbias values except for CCLM5 simulations. RMSE varies from 23.09 to 61.41 for the coastal zone, 9.54 to 58.94 for the savannah, and 14.81 to 35.45 for the Sahel. Air temperature R2 values are 86% for the Sahel, 93% for the savannah, and 93% for the Guinea Coast, with positive Mbias indicating that RCMs overestimate monthly air temperature. RMSE values range from 81.04 to 84.96 across West Africa. Overall, CORDEX RCMs show an underestimation of precipitation, varied estimates of evaporation, and an overestimation of temperature, while maintaining strong correlation coefficients for all variables.
Keywords : CORDEX-Africa, West Africa, Regional Climate Models, Precipitation, Air temperature, Evaporation
RESUME
L’étude a évalué neuf modèles climatiques régionaux (RCM) de CORDEX-Afrique pour simuler les conditions climatiques en Afrique de l’Ouest de 1970 à 2005. Les variables clés telles que les précipitations, la température de l’air et l’évaporation ont été analysées à l’aide de paramètres statistiques comme le coefficient de corrélation, le biais moyen (Mbias) et l’erreur quadratique moyenne (RMSE) en comparaison avec les données ERA5. Les RCMs CORDEX, avec une résolution normalisée à des grilles de 0,25° × 0,25°, montrent des valeurs R2 élevées pour les précipitations (91% au Sahel, 95% dans la savane, 88% en zone côtière). Les Mbias négatifs indiquent une sous-estimation des précipitations mensuelles. Pour l’évaporation, les R2 sont élevés avec des Mbias négatifs, sauf pour les simulations CCLM5. Concernant la température de l’air, les RCMs présentent une surestimation, avec des Mbias positifs dans toute l’Afrique de l’Ouest. En résumé, les RCMs de CORDEX montrent une sous-estimation des précipitations, des estimations variées de l’évaporation et une surestimation de la température, tout en maintenant des coefficients de corrélation élevés pour toutes les variables.
Mots-Clés : CORDEX-Afrique, Afrique de l’Ouest, Modèles climatiques régionaux, Précipitations, Température de l’air, Évaporation
REFERENCES
Akinsanola AA, Ogunjobi KO (2017) Evaluation of present-day rainfall simulations over West Africa in CORDEX regional climate models. Environ Earth Sci. https://doi.org/10.1007/ s12665-017-6691-9
Almagro A, Oliveira PTS, Rosolem R, Hagemann S, Nobre CA (2020) Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil. Atmos Res 244:105053. https://doi.org/10.1016/j.atmosres.2020.105053
Amira N. Mostafa a, f, Ali Wheida b, Mostafa El Nazer b, Mona Adel c, Lamia El Leithy c, Guillaume Siour d, Adriana Coman d, Agnes Borbon e, Abel Wahab Magdy f, Mohamed Omar a, Amal Saad-Hussein c, Stephane C. Alfaro d, (2019). Past (1950–2017) and future ( 2100) temperature and precipitation trends in Egypt. Weather and Climate Extremes 26 (2019) 100225
Ardoin-Bardin, S. (2004). Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne. Thèse de Doctorat en Sciences de l’Eau, Université Montpellier II, France
Ayugi B, Tan GR, Gnitou GT, Ojara M, Ongoma V (2020) Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos Res 232:104705. https://doi.org/10.1016/j.atmosres.2019.104705
Coughlan de Perez, E., van Aalst, M., Choularton, R., van den Hurk, B., Mason, S., Nissan, H., Schwager, S., 2019. From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in east africa. Food Sec. 11 (1), 57–68.
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011). The ERA-Interim reanalysis: confguration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828
Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;Balsamo, G.; Bauer, P.; et al, (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597.
Diallo I, Sylla MB, Camara M, Gaye AT (2012) Interannual variability of rainfall and circulation features over the Sahel based on multiple regional climate models simulations. Appl Climatol Theor. https://doi.org/10.1007/s00704-012-0791-y
Dong ND, Jayakumar KV, Agilan V (2018) Impact of Climate Change on Flood Frequency of the Trian Reservoir in Vietnam Using RCMS. J Hydrol Eng 23:05017032.
Douglas J. Parker, Mariae Diop-kane, Jean-Philippe Lafore (2018) ‘‘ Météorologie de l’Afrique de l’ouest tropicale.’’ édition juin 2018
Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547-1578. https://doi.org/10.1002/joc.1556
Gao XJ, Shi Y, Zhang DF, Wu J, Giorgi F, Ji ZM, Wang YG (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213-226. https://doi.org/10.3354/cr01084
Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general-circulation model. J Climate 3:941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
Giorgi F, Gutowski WJ (2015) Regional Dynamical Downscaling and the CORDEX Initiative. Annu Rev Env Resour 40:467-490. https://doi.org/10.1146/annurev-environ-102014-021217
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183.
Gloria Okafor, Thompson Annor, Samuel Odai, Jacob Agyekum, ( 2019) Volta basin precipitation and temperature climatology: evaluation of CORDEX-Africa regional climate model simulations. Theoretical and Applied Climatology,https://doi.org/10.1007/s00704-018-2746-4
- Saporta (2006). Probabilités, analyse des données et statistique”, 2ème Ed 2006, Editions technip, paris.
Hennermann, K.; Giusti, M. ERA5: Data Documentation; Technical Report; ECMWF: Reading, UK 2020.
Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Cornel Soci, D.D. Global reanalysis: Goodbye ERA-interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24.
Janicot, S.; Moron, V.; Fontaine, B.( 1996) Sahel droughts and Enso dynamics. Geophys. Res. Lett., 23, 515–518.
Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX: an international downscaling link to CMIP5. CLIVAR exchanges, no. 56, International CLIVAR Project Ofce, Southampton, United Kingdom, pp 34–40
Klutse NAB, Sylla MB, Diallo I, Sarr A, Dosio A, Diedhiou A, Kamga A, Lamptey B, Ali A, Gbobanyini E, Owusu K, Lennard C, Hewitson B, Nikulin G, Panitz HJ, Büchner M (2016) Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor Appl Climatol 123(1–2):369–386. https://doi.org/10.1007/s00704-014-1352-3
Leung LR, Qian Y, Bian XD, Washington WM, Han JG, Roads JO (2004) Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change. 62:75-113. https://doi.org/10.1023/B:CLIM.0000013692.50640.55
Maidment RI, Allan RP, Black E (2015) Recent observed and simulated changes in precipitation over Africa. Geophys Res Lett 42:8155-8164. https://doi.org/10.1002/2015GL065765
Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutierrez JM, Hagemann S, Richter I, Soares PMM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Change 7:764-773. https://doi.org/10.1038/nclimate3418
Maure G, Pinto I, Ndebele-Murisa M, Muthige M, Lennard C, Nikulin G, Meque A (2018) The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models. Environ Res Lett 13(6):065002. https://doi. org/10.1088/1748-9326/aab190
Mohamed El-Sayed El-Mahdy , Wael A. El-Abd, Fawzia I. Morsi, (2021) Forecasting lake evaporation under a changing climate with an integrated artificial neural network model: A case study Lake Nasser, Egypt. Journal of African Earth Sciences 179 (2021) 104191
Ngai ST, Juneng L, Tangang F, Chung JX, Salimun E, Tan ML, Amalia S (2020) Future projections of Malaysia daily precipitation characteristics using bias correction technique. Atmos Res 240:104926. https://doi.org/10.1016/j.atmosres.2020.104926
Nicholson, S.E., 2017. Climate and climatic variability of rainfall over eastern africa. Rev. Geophys. 55 (3), 590–635.
Nikulin G, Lennard C, Dosio A, Kjellström E, Chen Y, Hänsler A, Kupiainen M, Laprise R, Mariotti L, Maule CF, van Meijgaard E, Panitz HJ, Scinocca JF, Somot S (2018) The efects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ Res Lett 13(6):065003
Niu XR, Tang JP, Wang SY, Fu CB, Chen DL (2020) On the sensitivity of seasonal and diurnal precipitation to cumulus parameterization over CORDEX-EA-II. Clim Dynam 54:373-393. https://doi.org/10.1007/s00382-019-05010-w
Oluwaseun W. Ilori, Ifeoluwa A. Balogun, ( 2021). Evaluating the performance of new CORDEX‑Africa regional climate models in simulating West African rainfall. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01084-w
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M. et al., 2012. Changes in climate extremes and their impacts on the natural physical environment.
Servat et al, E., Paturel, J. E., Kouame, B., Travaglio, M., Ouedraogo, M., Boyer, J. F., Lubes-Niel, H., Fristch, J. M., Masson, J. M. &Marieu, B. (1998). Identification, caractérisation et conséquences d’une variabilité hydrologique en Afrique de l’Ouest et Centrale. In: Water Resources Variability in Africa during the XXth Century (ed. by E. Servat, D. Hughes, J. M. Fritsch & M. Hulme) (Proc. Abidjan Conf.), 323–337. IAHS Publ. 252. IAHS Press, Wallingford, UK
Simmons, A.J.; Uppala, S.; Dee, D.; Kobayashi, S. ERA-interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2007, 110, 25–36.
Sultan, B.; Janicot, S.; Diedhiou, A.( 2003) The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Clim., 16, 3389–3406.
Sylla MB, Diallo I, Pal JS (2013) West African monsoon in stateof the-art regional climate models. In: Tarhule A (ed) climate variability-regional and thematic patterns. InTech, London
Tamene Adugna Demissie, Chala Hailu Sime, ( 2021). Assessment of the performance of CORDEX regional climate models in simulating rainfall and air temperature over southwest Ethiopia.
Yonas Mathewos, Brook Abate, Mulugeta Dadi, (2023). Characterization of the skill of the CORDEX-Africa regional climate models to simulate regional climate setting in the East African Transboundary Omo Gibe River Basin, Ethiopia. Heliyon 9 (2023) e20379
Zou LW, Zhou TJ (2016) Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. J Geophys Res-Atmos 121:2691-2704. https://doi.org/10.1002/2015JD024519
