Laboratory estimation of elemental and organic carbon emissions from advanced biomass stoves in Senegal 

http://dx.doi.org/10.46411/jpsoaphys.2020.01.11

Section  de la parution:  Informations de publication

 

J. P. Soaphys, Vol 2, N°1 (2020) C20A11; 31 Mars 2021

Pages :  C20A11-1  à C20A11-7

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v2.1
DOI de l’article  : http://dx.doi.org/10.46411/jpsoaphys.2020.01.11
Print ISSN: 2630-0958
Historique de la version : actuelle

Information sur les auteurs

Kane Moustapha1*,

De la Sota Candela 2,

Viana Mar 3,

Youm Issakha

1 Centre for Studies and Research on Renewable Energy, Cheikh Anta Diop University of Dakar, Dakar, Sénégal.
2Technical University of Madrid, Madrid, Spain.
3Spanish National Research Council, IDAEA-CSIC, Barcelona, Spain


*To whom correspondances should be addressed. E-mail: * moustapha9.kane@ucad.edu.sn
 

ABSTRACT

In this study, we tested a natural draft gasifier, currently implemented in Senegal and the traditional three stones fire (TSF) in the laboratory, using the protocol of water boiling test (WBT). Pollutants emissions from three types of biomass full were investigated in this work. Our results show that, burning the same wood (Cordyla Pinnata, dimb), the gasifier had a fuel consumption 37% lower than the traditional three stones, and decrease emissions factors of fine particulate matter (PM) by 74%, organic carbon (OC) by 59 % and elemental carbon (EC) by 55%. The gasifier has also shown to reduce fuel used and emissions compared with the three stones using Casuarina Equisetifolia (Filao) though to a minor extent: 24 % in fuel consumption and emissions reduction of 53% of PM, 55% of OC and 18% EC. The micro-gasifier using typha pellets is the cooking system the most efficient with a reduction 70% of fuel and more than 85% of emissions comparing to the 3-stones-dimb combination. Our results agree with other studies and confirm that gasifier have a very low fuel consumption and low emissions of climate forcing particles. Further field studies are needed to evaluate the adoption of these new stoves and fuels and to analyze fuel consumption and emissions under real-world cooking

Keywords :  traditional cookstove; stove performance, emission factor; gasifier; water boiling test

Africa Energy Outlook 2014. International Energy Agency Available from

https://www.iea.org/publications/freepublications/public ation/WEO_Africa_French.pdf

Amadou OB et al. Transforming invading plants into fuel pellets in Ross-Bethio (Senegal); S3IC/JADE Project/Report S3IC. No.S3IC-2009-001/ Montreal, February 2009

Anderson PS and Reed TB. Micro-gasification: what it is and why it works. Boiling Point 2007 ; 53 :35–7.

ANSD (Agence Nationale de la Statistique et de la Démographie), Septembre 2014, Recensement Général de la Population et de l’Habitat, de l’Agriculture et de l’Elevage, Available from http://www.ansd.sn/ressources/RGPHAE- 2013/ressources/doc/pdf/12.pdf

ARC (Aprovecho Research Center). Instructions for Use of the Laboratory Emissions Monitoring System (LEMS); Updated February 2013

Arora, P. and Jain, S. (2015). Estimation of organic and elemental carbon emitted from wood burning in traditional and improved cookstoves using controlled cooking test. Environ. Sci. Technol. 49: 3958–3965.

https://doi.org/10.1029/2003JD003697

Cachier, H., Liousse, C., Pertuisot, M.H., Gaudichet, A., Echalar, F., Lacaux, J.P., 2096. African fire particulate emissions and atmospheric influence. Biomass Burn. Glob. Change 1, 428–440.

Caro R., Frutos H., Kitwana A.N, Shen A. 2011.Typha Charcoal in Senegal: Changing a National Threat into Durable Wealth. Massachusetts Institute of Technology.

Cavalli et al. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech., 3, 79–89, 2010. www.atmos-meas- tech.net/3/79/2010/

Carter E.M et al. Pollutant Emissions and Energy Efficiency of Chinese Gasifier Cooking Stoves and Implications for Future Intervention Studies. Environ. Sci. Technol. 2014, 48, 6461−6467.

CILLS. 2008, Programme Regional de promotion des Energies Domestiques et Alternatives au Sahel (predas).

Chafe, Z.A., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F. and Smith, K.R. (2014). Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ. Health Perspect. 122: 1314–1320.

Chung, S.H. and Seinfeld, J.H. (2002). Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. 107: 4407

Christian L’Orange, John Volckens , Morgan DeFoort. Influence of stove type and cooking pot temperature on particulate matter emissions from biomass cook stoves, Energy for Sustainable Development 16 (2012) 448–455

De la Sota, C., Viana, M., Kane, M., Youm, I., Masera, O., Lumbreras, J., 2020. Quantification of Carbonaceous Aerosol Emissions from Cookstoves in
Senegal. Aerosol Air Qual. Res. 20, 80–91. https://doi.org/10.4209/aaqr.2017.11.0540

EPA, PCIA, GACC (2014). The water boiling test. Version 4.2.3. Cookstove Emissions and Efficiency in a Controlled Laboratory Setting. U.S. Environmental Protection Agency, Partnership for Clean Indoor Air, Global Alliance for Clean Cookstoves.

GACC (Global Alliance for Clean Cookstoves). 2013. Análisis del Mercado de Estufas y Combustibles de Guatemala. Situación del sector

IEA, 2016. World Energy Outlook Special Report 2016: Energy and Air Pollution. International Energy Agency, Paris, France.

ISO, 2012, Guidelines for evaluating cookstove performance. Available from https://www.iso.org/standard/62075.html

Jacobson, M., Z. Strong radiactive heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2001, 409 (6821), 695-697.

Jessica Tryner, Bryan D. Willson, Anthony J. Marchese. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves, Energy for Sustainable Development 23 (2014) 99-109

Jetter J, Kariher P. Solid Fuel Household Cook Stoves: Characterization of Performance and Emissions. Biomass and Bioenergy 33 (2009) 294–305

Nordica MacCarty, Dean Still, Damon Ogle. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance, Energy for Sustainable Development 14 (2010) 161– 171

MacCarty, Dean Still, Damon Ogle. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance, Energy for Sustainable Development 14 (2010) 161– 171

Prime Indonesia. Available from

Beranda

PROTA (Plant Resources of Tropical Africa) . Guide to the use of African plants. http://www.prota4u.org/protav8.asp?p=Cordyla+pinna ta

Raman, J. Murali, D. Sakthivadivel, V.S. Vigneswaran. Performance evaluation of three types of forced draft cook stoves using fuel wood and coconut shell, Biomass and Bioenergy 49 (2013) 333-340

Roden, C. A, Bond, T.C, Conaway, S., Pinel, A.B.O. Emission factors and real-time optical properties of particles emitted from traditional wood burning stoves. Environ. Sci. Technol. 2006, 40 (21), 6750-6757

SEM-FUND ( Social and Ecological Management FUND). http://sem-fund.org/our-approach/

Smith KR and Peel JL. Mind the gap. Environ Health Perspect 2010;118(12).

Shen, G., Wen, W., Yanyan, Z., Yujia, M., Bin, W., Rong, W., Wei, L., Huizhong, S., Ye, H., Yifeng, Y., Wei, W., Xilong, W., Xuejun, W. and Shu, T. (2012). Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environ. Sci. Technol. 46: 4207–4214.

Shen et al. Factors influencing the adoption and sustainable use of clean fuels and cookstoves in China. A Chinese literature review. Renewable and Sustainable Energy Reviews, 2015, 51, 741-750.

Shurupov S. Some factors that govern particulate carbon formation during pyrolysis of hydrocarbons. Pittsburgh: Combustion Institute; 2000. p. 2507–14

Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A.H. and Friedlander, S.K. (2005). Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts. Science 307: 1454– 1456.

Wikipedia. https://en.wikipedia.org/wiki/Casuarina_equisetifolia

MacCarty, N., Ogle, D., Still, D., Bond, T., Roden, C., 2008b. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain. Dev. 12, 56–65. https://doi.org/10.1016/S0973-0826(08)60429-9

De la Sota, C., Viana, M., Kane, M., Youm, I., Masera, O., Lumbreras, J., 2020. Quantification of Carbonaceous Aerosol Emissions from Cookstoves in
Senegal. Aerosol Air Qual. Res. 20, 80–91. https://doi.org/10.4209/aaqr.2017.11.0540

Rau, J.A., 2089. Composition and Size Distribution of Residential Wood Smoke Particles. Aerosol Sci. Technol. 10, 181–202. https://doi.org/10.1080/02786828908959233

IEA, 2016. World Energy Outlook Special Report 2016: Energy and Air Pollution. International Energy Agency, Paris, France.

Roth, C., 2011. Micro-gasification: cooking with gas from dry biomass. An introduction to concepts and applications of wood-gas burning technologies for cooking. GIZ.

MacCarty, N., Ogle, D., Still, D., Bond, T., 2008a. A
laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain. Dev. 12, 56–65.

 

 

article elements

Categories: