Assessment of different sands potentiality to formulate an effective thermal energy storage material (TESM). 

Bagre et al. en pdf

http://dx.doi.org/10.46411/jpsoaphys.2020.01.08

Section  de la parution:  Information de publication

 

J. P. Soaphys, Vol 2, N°1 (2020) C20A08; 14 Fevrier 2021

Pages :  C20A12-1  à C20A12-7

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v2.1a
DOI de l’article  : http://dx.doi.org/10.46411/jpsoaphys.2020.01.08
Print ISSN: 2630-0958
Historique de la version : actuelle

Information sur les auteur

Bagré Boubou *,

Muritala Ibrahim Kolawole,

Boukar Makinta,

Daho Tizane,

Nebié Jacques,

Rabani Adamou,

Béré Antoine

 

Affiliation

WASCAL Doctoral Research Program-Climate Change and Energy, Université Abdou Moumouni, Niamey, Niger
Institute of Low-Carbon Industrial Processes, German Aerospace Center (DLR) Zittau, Germany,
Laboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBO

*To whom correspondances should be addressed. E-mail: bagre.b@edu.wascal.org

 

Abstract

This paper presents a review of solid particles size effect on thermocline storage performance for Concentrating Solar Power (CSP) storage systems. After an overview on the different process to store thermal energy we found that a particle size of 2cm diameter is better to achieve a good sensible heat storage performance within a system call dual-medium thermocline (DMT). The thermal storage potentiality of different sands from Burkina Faso have been carry out to look at the possibility to make a filler material with 2cm diameter. However, two different sands (mining dune and river sand) properties have been assessed. The density of the two samples is more than with low mass losses at 700 °C without any agglomeration at 900 °C and 1000°C. This indicates that the mining sand samples from Bobo Dioulasso and Dune sand from Sahel region in Burkina (Oursi) have the potentials to be used to develop an effective thermal energy storage material or to store thermal energy at high temperature.

Keywords : Dual medium thermocline, thermal stability, Concentrated Solar Power, Storage effectiveness, Sand

Angelini, G., A. Lucchini, and G. Manzolini. 2014. « Comparison of Thermocline Molten Salt Storage Performances to Commercial Two-Tank Configuration. » Energy Procedia 49: 694-704. https://doi.org/10.1016/j.egypro.2014.03.075
https://doi.org/10.1016/j.egypro.2014.03.075
 
Bruch, A., J. F. Fourmigue, R. Couturier, and S. Molina. 2014. « Experimental and Numerical Investigation of Stability of Packed Bed Thermal Energy Storage for CSP Power Plant. » Energy Procedia 49: 743-51. https://doi.org/10.1016/j.egypro.2014.03.080.
https://doi.org/10.1016/j.egypro.2014.03.080
 
Chang, Z. S., X. Li, C. Xu, C. Chang, and Z. F. Wang. 2015. « The Design and Numerical Study of a 2MWh Molten Salt Thermocline Tank. » Energy Procedia 69: 779-89. https://doi.org/10.1016/j.egypro.2015.03.094.
https://doi.org/10.1016/j.egypro.2015.03.094
 
Diago, Miguel, Alberto Crespo Iniesta, Thomas Delclos, Tariq Shamim, and Nicolas Calvet. 2015. « Characterization of Desert Sand for Its Feasible Use as Thermal Energy Storage Medium. » Energy Procedia 75: 2113-18. https://doi.org/10.1016/j.egypro.2015.07.333.
https://doi.org/10.1016/j.egypro.2015.07.333
 
Esence, Thibaut. 2017. « Étude Et Modélisation Des Systèmes De Stockage Thermique De Type Régénératif Solide / Fluide, » 242.
 
Esence, Thibaut, Arnaud Bruch, Jean François Fourmigué, and Benoit Stutz. 2018. « Extended Modeling of Packed-Bed Sensible Heat Storage Systems. » AIP Conference Proceedings 2033. https://doi.org/10.1063/1.5067101.
https://doi.org/10.1063/1.5067101
 
Esence et al. 2020. « A Versatile One-Dimensional Numerical Model for Packed-Bed Heat Storage Systems. » Renewable Energy 133: 200-204. https://doi.org/10.1016/j.renene.2018.10.012.
https://doi.org/10.1016/j.renene.2018.10.012
 
Faust, Eva, Dominik Schlipf, Guenter Schneider, and Hartmut Maier. 2018. « Flow Modeling of a Packed Bed High Temperature Thermal Energy Storage System. » AIP Conference Proceedings 2033 (November): 1-9. https://doi.org/10.1063/1.5067102.
https://doi.org/10.1063/1.5067102
 
Fernandez, A. I., M. Martnez, M. Segarra, I. Martorell, and L. F. Cabeza. 2010. « Selection of Materials with Potential in Sensible Thermal Energy Storage. » Solar Energy Materials and Solar Cells 94 (10): 1723-29. https://doi.org/10.1016/j.solmat.2010.05.035.
https://doi.org/10.1016/j.solmat.2010.05.035
 
Flueckiger, Scott M., Zhen Yang, and Suresh V. Garimella. 2012. « Thermomechanical Simulation of the Solar One Thermocline Storage Tank. » Journal of Solar Energy Engineering, Transactions of the ASME 134 (4). https://doi.org/10.1115/1.4007665.
https://doi.org/10.1115/1.4007665
 
Herrmann, Ulf, Bruce Kelly, and Henry Price. 2004. « Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants. » Energy 29 (5-6): 883-93. https://doi.org/10.1016/S0360-5442(03)00203-2.
https://doi.org/10.1016/S0360-5442(03)00193-2
 
Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2016. « A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales. » Applied Thermal Engineering 100: 753-61. https://doi.org/10.1016/j.applthermaleng.2016.01.110.
https://doi.org/10.1016/j.applthermaleng.2016.01.110
 
Hoffmann, Jean-francois. 2015. « Stockage Thermique Pour Centrale Solaire Thermodynamique ‘ a Concentration Mettant En Oeuvre Des Mat ́ Eriaux Naturels Ou Recycl ́ Es Préparée Au Sein de l ‘ École Doctorale : Présentée Par Jean-François HOFFMANN Stockage Thermique Pour Centrale Solaire T. »
 
Huang, Qiongzhu, Guimin Lu, Jin Wang, and Jianguo
 
Yu. 2011. « Thermal Decomposition Mechanisms of MgCl2·6H2O and MgCl2·H2O. » Journal of Analytical and Applied Pyrolysis 91 (1): 159-64. https://doi.org/10.1016/j.jaap.2011.02.005.
https://doi.org/10.1016/j.jaap.2011.02.005
 
Iniesta, A. Crespo, M. Diago, T. Delclos, Q. Falcoz, T. Shamim, and N. Calvet. 2015. « Gravity-Fed Combined Solar Receiver/Storage System Using Sand Particles as Heat Collector, Heat Transfer and Thermal Energy Storage Media. » Energy Procedia 69: 802-11. https://doi.org/10.1016/j.egypro.2015.03.089.
https://doi.org/10.1016/j.egypro.2015.03.089
 
Klein, P., T. H. Roos, and T. J. Sheer. 2014. « Experimental Investigation into a Packed Bed Thermal Storage Solution for Solar Gas Turbine Systems. » Energy Procedia 49: 840-49. https://doi.org/10.1016/j.egypro.2014.03.091.
https://doi.org/10.1016/j.egypro.2014.03.091
 
L. G. Radosevich. 2088. « Final report on the power production phase of the 10 mwe solar thermal central receiver pilot plant. » Lalitha Priya, R., Salim Subi, B. Vaishnu, and K. R.M. Vijaya Chandrakala. 2016. « Study on Characterization of River Sand as Heat Storage Medium. » Indian Journal of Science and Technology 9 (30). https://doi.org/10.17485/ijst/2016/v9i30/99010.
https://doi.org/10.17485/ijst/2016/v9i30/99010
 
Laube, Tim, Luca Marocco, Klarissa Niedermeier, Julio Pacio, and Thomas Wetzel. 2020. « Thermodynamic Analysis of High-Temperature Energy Storage Concepts Based on Liquid Metal Technology. » Energy Technology 8 (3). https://doi.org/10.1002/ente.202000908.
https://doi.org/10.1002/ente.201900908
 
Mahfoudi, Nadjiba. 2016. « Stockage de La Chaleur Dans Un Milieu Granuleux Solide. » Mahfoudi, Nadjiba, Abdelhafid Moummi, and Mohammed El Ganaoui. 2014. « Sand as a Heat Storage Media for a Solar Application: Simulation Results. » Applied Mechanics and Materials 621 (August): 214-20. https://doi.org/10.4028/www.scientific.net/AMM.621. 214.
https://doi.org/10.4028/www.scientific.net/AMM.621.214
 
 
Muritala I. K, Guban D, Roeb M, Sattler C. High temperature production of hydrogen: assessment of non-renewable resources technologies and emerging trends. International Journal of Hydrogen Energy, Vol. 45, N° 49, 26022-26035 https://doi.org/10.1016/j.ijhydene.2020.08.154.
https://doi.org/10.1016/j.ijhydene.2020.08.154
 
Odenthal, Christian, Wolf Dieter Steinmann, and Stefan Zunft. 2020. « Analysis of a Horizontal Flow Closed Loop Thermal Energy Storage System in Pilot Scale for High Temperature Applications – Part I: Experimental Investigation of the Plant. » Applied Energy 263 (September 2020): 114573. https://doi.org/10.1016/j.apenergy.2020.114573.
https://doi.org/10.1016/j.apenergy.2020.114573
 
Pacheco, James E, Steven K Showalter, and William J Kolb. 2001. « Solar Energy: The Power to Choose. » Proceedings of Solar Forum. http://infohouse.p2ric.org/ref/22/21032.pdf.
 
Raade, Justin W., and David Padowitz. 2011. « Development of Molten Salt Heat Transfer Fluid with Low Melting Point and High Thermal Stability. » Journal of Solar Energy Engineering, Transactions of the ASME 133 (3): 1-7. https://doi.org/10.1115/1.4004243.
https://doi.org/10.1115/1.4004243
 
Sawadogo, Youssouf, Lamine Zerbo, Moustapha Sawadogo, Mohamed Seynou, Moussa Gomina, and Philippe Blanchart. 2020. « Characterization and Use of Raw Materials from Burkina Faso in Porcelain Formulations. » Results in Materials 6 (March): 100085. https://doi.org/10.1016/j.rinma.2020.100085.
https://doi.org/10.1016/j.rinma.2020.100085
 
Schlipf, Dominik, Eva Faust, Guenter Schneider, and Hartmut Maier. 2017. « First Operational Results of a High Temperature Energy Storage with Packed Bed and Integration Potential in CSP Plants. » AIP Conference Proceedings 1850. https://doi.org/10.1063/1.4984445.
https://doi.org/10.1063/1.4984445
 
Schumann, T. E.W. 2029. « Heat Transfer: A Liquid Flowing through a Porous Prism. » Journal of the Franklin Institute 208 (3): 405-16. https://doi.org/10.1016/S0016-0032(29)91186-8. Tiskatine, R., A. Eddemani, L. Gourdo, B. Abnay, A. Ihlal, A. Aharoune, and L. Bouirden. 2016. « Experimental Evaluation of Thermo-Mechanical Performances of Candidate Rocks for Use in High Temperature Thermal Storage. » Applied Energy 171: 243-55. https://doi.org/10.1016/j.apenergy.2016.03.061.
https://doi.org/10.1016/j.apenergy.2016.03.061
 
Ummadisingu, Amita, and M. S. Soni. 2011. « Concentrating Solar Power – Technology, Potential and Policy in India. » Renewable and Sustainable Energy Reviews 15 (9): 5169-75. https://doi.org/10.1016/j.rser.2011.07.040.
https://doi.org/10.1016/j.rser.2011.07.040
 
Wang, X. H., J. Y.H. Fuh, Y. S. Wong, and Y. X. Tang. 2003. « Laser Sintering of Silica Sand – Mechanism and Application to Sand Casting Mould. » International Journal of Advanced Manufacturing Technology 21 (12): 1015-20. https://doi.org/10.1007/s00170-002-1424-x.
https://doi.org/10.1007/s00170-002-1424-x
 
Xu, Chao, Xin Li, Zhifeng Wang, Yaling He, and Fengwu Bai. 2013. « Effects of Solid Particle Properties on the Thermal Performance of a Packed- Bed Molten-Salt Thermocline Thermal Storage System. » Applied Thermal Engineering 57 (1-2): 69- 80. https://doi.org/10.1016/j.applthermaleng.2013.03.052.
https://doi.org/10.1016/j.applthermaleng.2013.03.052
 
Zanganeh, G., A. Pedretti, A. Haselbacher, and A. Steinfeld. 2015. « Design of Packed Bed Thermal Energy Storage Systems for High-Temperature Industrial Process Heat. » Applied Energy 137: 812-22. https://doi.org/10.1016/j.apenergy.2014.07.110.
https://doi.org/10.1016/j.apenergy.2014.07.110
 
Zanganeh, G, G Ambrosetti, A Pedretti, S Zavattoni, M Barbato, P Good, A Haselbacher, and A Steinfeld. 2012. « A 3 MWth Parabolic Trough CSP Plant Operating with Air at up to 650 °C, » 5-10.
 
Zunft, Stefan, Matthias Hänel, Michael Krüger, Volker Dreißigacker, Felix Göhring, and Eberhard Wahl. 2011. « Jlich Solar Power Tower-Experimental Evaluation of the Storage Subsystem and Performance Calculation. » Journal of Solar Energy Engineering, Transactions of the ASME 133 (3): 1-5. https://doi.org/10.1115/1.4004358.
https://doi.org/10.1115/1.4004358

 

article elements

Categories: