Low voltage grid connected three-phase inverter control with hybrid neuro-fuzzy 

http://dx.doi.org/10.46411/jpsoaphys.2020.01.07

Section  de la parution:  Information de publication

 

J. P. Soaphys, Vol 2, N°1 (2020) C20A07; 10 Mars 2021

Pages :  C20A07-1  à C20A07-6

DOI du journal   : https://doi.org/10.46411/jpsoaphys.journal
DOI du Numéro : https://doi.org/10.46411/jpsoaphys.journal.v2.1a
DOI de l’article  : http://dx.doi.org/10.46411/jpsoaphys.2020.01.07
Print ISSN: 2630-0958
Historique de la version : actuelle

Information sur les auteur

Ndiaye El hadji Mbaye*,

Ndiaye Alphousseyni,

Faye Mactar

 

Affiliation

1 Research team energetic system and efficiency, Alioune Diop University of Bambey
2 Laboratory of Water, Energy, Environment and Industrial Processes, ESP, S-10700, Dakar-Fann, Senegal.

*To whom correspondances should be addressed. E-mail: elhadjimbaye.ndiaye@uadb.edu.sn

 

A B S T R A C T

In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) and Modified Proportional Integral Derivate (MPID) are used for respectively DC- link voltage regulation and grid currents regulation for grid connected three- phase inverter. The main purpose of this work is to reduce the fluctuation on DC-link voltage and the Total Harmonic Distortion (THD) on the injected currents. Indeed, the use of Proportional-Integral (PI) controller cannot achieve these objectives due to their disturbances sensitivity problem and limited regulation bandwidth. To avoid these problems, an ANFIS regulator has been designed. Results show that ANFIS has a very short response time (Rt) 0.097 s with no overshoot (D).

Mots clés : Low Voltage Grid, ANFIS, three-phase inverter, Modified PID, THD.

 

[1]  I. E. Agency, « World Energy Investement, » 2018.
 
[2]  E. hadji M. Ndiaye, A. Ndiaye, M. Faye, and S.
Gueye, « Intelligent Control of a Photovoltaic
Generator for Charging and Discharging Battery Using Adaptive Neuro-Fuzzy Inference System, » Int. J. Photoenergy, vol. 2020, 2020.
https://doi.org/10.1155/2020/8649868
 
[3]  O. Ben Belghith, L. Sbita, and F. Bettaher, « MPPT Design Using PSO Technique for Photovoltaic System Control Comparing to Fuzzy Logic and P & O Controllers, » Energy Power Eng., vol. 8, pp. 349-366, 2016.
https://doi.org/10.4236/epe.2016.811031
 
[4]  B. Bendib, F. Krim, H. Belmili, M. F. Almi, and S. Boulouma, « Advanced Fuzzy MPPT Controller for a stand-alone PV system, » Energy Procedia, vol. 50, pp. 383-392, 2014.
https://doi.org/10.1016/j.egypro.2014.06.046
 
[5]  M. Nabipour, M. Razaz, S. G. H. Seifossadat, and
S. S. Mortazavi, « A new MPPT scheme based on a novel fuzzy approach, » Renew. Sustain. Energy Rev., vol. 74, no. February, pp. 1147-1169, 2017.
 
[6]  P. Kofinas, A. I. Dounis, G. Papadakis, and M. N.
Assimakopoulos, « An Intelligent MPPT controller
based on direct neural control for partially shaded PV system, » Energy Build., vol. 90, pp. 51-64, 2015.
https://doi.org/10.1016/j.enbuild.2014.12.055
 
[7]  E. hadji M. Ndiaye, A. Ndiaye, and M. Faye, « Experimental Validation of PSO and Neuro- Fuzzy Soft-Computing Methods for Power Optimization of PV installations, » in 8th IEEE International Conference on Smart Grid, 2020, pp. 189-207.
 
[8]  Z. Yao, L. Xiao, and J. M. Guerrero, « Improved control strategy for the three-phase grid-connected inverter, » IET Renew. Gener., vol. 9, no. 3, pp. 587-592, 2015.
https://doi.org/10.1049/iet-rpg.2014.0350
 
[9]  A. Ndiaye, L. Thiaw, and G. Sow, « Application of new modeling and control for grid connected photovoltaic systems based on artificial intelligence, » J. Electr. Electron. Eng. Res., vol. 7, no. 1, pp. 1-10, 2015.
 
[10]  D. Gueye, A. Ndiaye, and F. Mactar, « Design Methodology of Novel PID for Efficient Integration of PV Power to Electrical Distributed Network, » Int. J. Smart Grid, vol. 2, no. 1, 2018.
 
[11]  N. Hamrouni, M. Jraidi, A. Dhouib, and A. Cherif,
 »Design of a command scheme for grid connected PV systems using classical controllers, » Electr. Power Syst. Res., vol. 143, pp. 503-512, 2017.
https://doi.org/10.1016/j.epsr.2016.10.064
 
[12]  N. F. Guerrero-Rodriguez, A. B. Rey-Boué, and E. Reyes-Archundia, « Overview and comparative study of two control strategies used in 3-phase grid- connected inverters for renewable systems, » Renew. energy Focus, vol. 20, no. 00, 2017.
https://doi.org/10.1016/j.ref.2017.05.007
 
[13]  L. Ma, W. Ran, T. Q. Zheng, and S. Member, « Modeling and Control of Three-Phase Grid- Connected Photovoltaic Inverter, » no. 2, pp. 2240-2245, 2010.
 
[14]  B. Long, L. Huang, H. Sun, Y. Chen, F. Victor,
and K. To, « An intelligent dc current minimization
method for transformerless grid-connected photovoltaic inverters, » ISA Trans., no.
 
[15]  C. MAHAMAT, M. PETIT, F. COSTA, and R.
MAROUANI, « Balanced Active and Reactive
Control Applied to a Grid Connected Five Level Inverter, » Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, 2017.
https://doi.org/10.14569/IJACSA.2017.081027
 
[16]  F. Lin, K. Lu, and T. Ke, « Probabilistic Wavelet Fuzzy Neural Network based reactive power control for grid-connected three-phase PV system during grid faults, » Renew. Energy, vol. 92, pp. 437-449, 2016.
https://doi.org/10.1016/j.renene.2016.02.036
 
[17]  S. Vinnakoti and V. R. Kota, « ANN based control scheme for a three-level converter based unified power quality conditioner, » J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 526-541, 2018.
https://doi.org/10.1016/j.jesit.2017.11.001
 
[18]  A. Kusagur, S. F. Kodad, and S. Ram, « Modelling & simulation of an ANFIS controller for an AC drive, » World J. Model. Simul., vol. 8, no. 1, pp. 36-49, 2012.
 
[20] R. Pavan Kumar Naidu and S. Meikandasivam, « ICM based ANFIS MPPT controller for grid connected photovoltaic system, » Int. J. Eng. Technol., vol. 7, no. 3, pp. 1508-1513, 2018.
https://doi.org/10.14419/ijet.v7i3.13562
 
[20]  N. El hadji Mbaye, N. Alphousseyni, M. Faye, and A. Thiam, « Design and implementation of Neuro- Fyzzy command of three-phase inverter connected to the electricity grid. »
 
[21]  M. A. Enany, M. A. Farahat, and A. Nasr,
 »Modeling and evaluation of main maximum
power point tracking algorithms for photovoltaics systems, » Renew. Sustain. Energy Rev., vol. 58, pp. 1578-1586, 2016.
https://doi.org/10.1016/j.rser.2015.12.356
 
[22]  P. K. Gayen and A. Jana, « An ANFIS based improved control action for single phase utility or micro-grid connected battery energy storage system, » J. Clean. Prod., vol. 164, pp. 1034-1049, 2017.
https://doi.org/10.1016/j.jclepro.2017.07.007
 
[23]  N. Altin, « dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter, » vol. 56, pp. 130-139, 2012.
https://doi.org/10.1016/j.enconman.2011.11.017
 

 

article elements

Categories: